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9. BRIEF OUTLINE OF RESEARCH FINDINGS

In a conventional coherent optical signal processor [1], the processing
operation is usually carried out at the spatial frequency or Fourier plane
with a complex spatial filter [2]. This type of coherent optical processor
offers a myriad of complicated processing operations [3]. Its success is
primarily due to the profound diffraction phenomena. However, complex signal
processing can also be achieved by the spatial impulse response using a joint
transform processor. There are several inherent advantages of using the joint
Fourier transform processor as compared with the conventional coherent
processor: (1) spatial filter adjustment is not imposed; (2) a higher input
space-bandwidth product; (3) generally, a higher modulation index of the joint
transform hologram; (4) lower spatial carrier frequency, etc. In view of
these advantages, a joint transform processor, in principle, is capable of
performing optical signal processing more efficiently, particulariy in the
application of real-time pattern recognition. The purpose of this research
program is to investigate an adaptive liquid crystal TV based correlator as
applied to real-time pattern recognition and tracking.

In this period, from April 15, 1991 to December 14, 1992, we have
accomplished several major tasks on the research of real-time pattern
recognition with an LCTV based correlator for which various results have been
reported in the refereed journals and conference proceedings; with the
approval of the Department of the U.S. Army. Sample copies of these
publications are included in this final technique report in the subsequent
sections, to provide a concise documentation of our findings. In the
following sections, we shall give an overview of our research work done during

this program. We will highlight some of the accomplished works. A list of
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publications resulting from this support has been cited in the preceding

section.

9.1 LCTV Hybrid Modulating Properties (Appendix 10.1)

During this research program, we have successfully investigated the
phase modulating properties of a liquid crystal television (LCTV) panel, as
applied to a joint transform correlator (JTC) for pattern Eecognition and
identification. It was found that the LCTV under investigation can modulate
close to 2n of phase under optimum brightness control (bias) conditions. It
was also determined that this phase-mostly LCTV operation produced the best
JTPS (more higher-order fringes) and the brightest correlation signals.

The overall light efficiency of the phase modulation operation produced
the best JTPS (more higher-order fringes) and the brightest correlation
signals.

The overall light efficiency of the phase modulation operation was also
measured and compared to the normal amplitude operation. It was found that
82X less light is needed when the LCTVS are operated in the phase-mostly mode.
This allows correlators to be built using much smaller coherent sources--
saving space and expense. A paper of reporting this finding was published in

Applied Optics [4].

9.2 Effects of Thresholding on JTC (APPENDIX 10.2)

In this period of research we have also investigated the effects of
thresholding in joint-transform correlation. Some nonlinear effects in the
joint-transform power spectrum (JTPS) have been analyzed, and using a linear

piecewise model to represent the nonlinear characteristic of the spectrum, we
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have demonstrated that hard clipping or dc blocking the JTPS produces effects
similar to the binarization scheme. Both hard clipping or dc blocking enhance
the high-frequency content and increase the modulation depth of the fringes.
Direct-current blocking is preferred, however, because this technigque not only
increases the width and the modulation of the sinusoidal grating, it also
eliminates the noise energy content. A paper reporting this investigation has

been published in Applied Optics [5].

9.3 LCTV Kinoform Generation (APPENDIX 10.3)

We have also, in this period of research, found that kinoform generation
can be obtained by using the commercially available LCTV. We have
demonstrated that the kinoform using the phase modulation depth is lower than
2n. However, this type of kinoform has a smaller space bandwidth product and
a lower diffraction efficiency. Since most of the commercially availabie
LCTV, the modulation index is relatively small, by using its n phase
modulation, the n phase kinoform device is still a promising technique for
many optical signal processing applications. A manuscript reporting these

findings has been accepted for publication in Optical Engineering [6].

9.4 LCTV Beam Steering (APPENDIX 10.4)

We have, in this period of research, carried out a program of developing
a beam steering device using a simple commercially available LCTV. In this
experiment, we have shown that a tunable blazed grating can be used in beam
steering application, particularly when small angular deflection is needed.
Due to the lower modulation index of the current LCTV panel, and the imperfect

mapping of the frame grabber, 50-80% diffraction efficiency of the LCTV beam




steering is achievable. We have stressed that the higher order of the
diffraction spot can be blocked out using a moving pinhole. As the LCTV
technology improves, the obstacles can be avoided in the near future,
particularly using an LCTV with a phase modulation depth of 2n and smaller
pixel sizes. A paper of this nature has been submitted to the Microwave and

Optical Technology Letters for publication [7].

9.5 1Intensity Compensation JTC (APPENDIX 10.5)

Although the advances of real time joint transform correlator (JTC) has
become a significant realtime entity, the correlation profiles are usually
very broad, which reduces the accuracy of detection. We have, in this period
of research, investigated an intensity compensation filter (ICF) technique to
sharpen the correlation peak intensities. We have taken the benefit of the
power spectrum of the reference function, by which an ICF can be constructed
to improve the correlation performance and the diffraction efficiency in a
JTC. Since the synthesis of the ICF is basically based on the reference
function, the ICF can be regarded as an object independent filter. However,
if some 1nfdrmation is provided by the object function a priori, such as
estimated SNR, an optimal ICF can then be synthesized. Although the advantage
of the CJTC is its strong resistance to noise, yet it lacks the sensitivity to
discriminate some high spatial frequency content. On the other hand, the ICF
technique would provide an easy make-up for this drawback by balancing the
system noise immunity and the discrimination sensitivity and accuracy, which
can be achieved by adjusting the threshold (or bias) ratio. From the
simulated results, we can see some significant improvements in terms of

discrimination capability and diffraction efficiency for noisy input object,




cluttered object, multi-target environment, etc. The technique can also be
used in fringe binarization as a pre-binarization processing, which would ease
the problem of determining the proper threshold level that decreases the risk
of faulty correilation peaks. The detailed content of this work has been

accepted fzr publication in Applied Optics [8].

9.6 Multi-Target Detection Spatial Synthesis JTC (APPENDIX 10.6)

Joint transform correlator offers the advantages of simplicity of
alignment and suitable for hybrid-optical processing. However, due to heavy
DC content of the input target, it also produces relatively broad correlation
profiles, which hinders the application to multi-target detection. Although
this problem can be solved by using an intensity compensation filter (ICF), it
is generally limited for single reference problems. Nevertheless, this
problem can be alleviated if a spatial function, whose Fourier transform (FT)
is equivalent to the FT of the reference multiplied by the ICF can be
synthesized. We have, in this period, investigated the applicability of this
technique for multi-target recognition. We have shown that the spatial
synthesis technique can be applied for multi-reference functions, since it
synthesizes a finite sized spatial impulse response as a substitute for the
reference pattern used for the conventional joint transform correlation. And
the spatially synthesized reference functions can be easily implemented with a
current state-of-the-art SLM, e.g., LCTV, by using a two-step sign
decomposition technique. We have further demonstrated by choosing a proper
threshold level, the spatial synthesis joint transform correlation can be fit
for different input object conditions, e.g., noise, cluttering, etc.

Comparison of the performance between the conventional and spatial synthesis
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techniques are provided. We have shown that the spatial synthesis technique
offers a higher signal discrimination for noisy input, cluttering, and
spectral fringe binarization. A paper of this study has been submitted to

Applied Optics for publication [9].

9.7 Moment Invariant Neural Net (APPENDIX 107)

An image generally contains a large amount of information, for which
patter recognition is usually loaded with heavy and time consuming
computation. However, pattern recognhition can be performed more efficiently
b:r the biological neural net, which has led to intensive research on
artificial neural network (ANN). Because of the massive parallel operation of
the neural net, von Neumann digital computer is not suitable for its
implemention, Since optics offers the advantage of three dimensional (3-D)
interconnection and parallel processing, it has become & prime candidate for
the implementation of ANN. Although neural network is robust to input noise,
most of the neural network modeis are not distortion invariant (e.g., shift,
rotation and scale variation), which severely limits the practical
application. Since the distortion invariant pattern recognition is the
ultimate goal that we would 1ike to achieve. In this period of research, we
have studied an invariant neural network using the principle of moment
invariant. Application to a LCTV optical neural network is provided. We
remark that to increase the discriminability and the processing capacity of
the neurocomputing, higher order moment invariants should be also considered.
However, it would require more pixels for the encoding. Furthermore, since

the different bits in the binary code represent the values of different order

of magnitude, it represents a nonuniformly weighted code. For instance, the
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first bit in the 10 digit bits represents a value of 512, but the last bit
represents only a value of 1. Because all the bits will be equally processed
in the optical neural network, to improve the overall performance, either a
uniformly weighted code has to be developed, or the network should be trained
to process nonuniformiy (e.g., pay more attention to the neurons representing
the exponent than those representing the lower digit bits). A paper reporting

these findings has been published in Optik [10].

9.8 Mirror-Array Interconnection Neural Net (APPENDIX 10.8)

Optical implementations of neural nets have been burgeoning in recent
years. One of the key reasons must be the massive interconnection
capabilities of optics, in which either lenslet-array or holographic
interconnections are employed. The basic distinction between these techniques
is that the lenslet-array interconnection neural network is essentially an
incoherent interconnection system, whereas the holographic interconnection is
incoherent. Although the advantage of using incoherent light is the
capability of suppressing coherent artificial noise, the lenslet-array
interconnection suffers from low light efficiency, which limits large-scale
operations. To alleviate this shortcoming, we have in this period of
research, investigated a mirror-array interconnection method, for which high
light efficiency can be achieved. By replacing the commonly used lenslet
array with the mirror array, we increase the light efficiency by a factor of
N,. The overall performance of the system depends on the source size, the
diffraction effects, and the focal length of the paraboiic mirror-array

substrate. In short, the synthesizing of a large-scale mirror array for

optical interconnections is possible, for which experimental demonstrations
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are provided. A paper reporting the results have been published in Optics

Letters [11].

9.9 Redundant-Interconnection Neural Net (APPENDIX 10.9)

We recently introduced an interpattern-association (IPA) algorithm in an
optical neural network, in which the special and the common features among the
reference patterns can be determined. However, the interconnection for an IPA
network would be highly redundant. Although a more highly redundant
interconnection would produce higher noise immunity, the discriminability
would be reduced. We have in this period of research studied an optimum—
redundant-interconnection network, for which the real performance can be
improved. In this study, we have introduced a redundant R-IPA model to
improve the performance of the neural network. Although redundant
interconnection is more robust, it reduces the discriminability for pattern
recognition. Nevertheless, under noisy-input and partial-input situations,
the redundant-interconnection network performs better. We have shown that,
compared with the Hopfield and the IPA models, the optimum redundant OR-IPA
neural network improves the robustness and the pattern discriminability. A
paper of the redundant interconnection neural net using LCTVs has been

published in Applied Optics [12].

9.10 Polychromatic Neural Net (APPENDIX 10.10)

We have recently presented an optical neural network using inexpensive
pocket-size liquid crystal televisions (LCTVs) where the IWM was displayed on
the LCTV with a microcomputer. This LCTV neural network architecture is

basically a hybrid optical-digital system where the parallelism and
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interconnectivity of optics is exploited. Currently available LCTVs are built
with color ligquid-crystal panels, which makes them particularly suitable for
application to color neural nets. We have, in this period of research,
developed a polychromatic L.CTV neural network in which the training set can be
decomposed into primary colors, the polychromatic IWM can be synthesized by
simply combining the primary color IWMs of the training set. Computer
simulated and experimental results show that a color neural net can most
1ikely be constructed using color LCTVs. Furthermore, using the RGB pixel
elements of the LCTVs, multichannel neural net operations should also be
possible. A paper reporting this research has been published in Optics

Communications [13].

9.11 Optical Implementation of Hamming Net (APPENDIX 10.11)

Because of all the features that a Hamming net is particularly suitable
for large-scale optical implementation. We have, in this period, presented a
modified Hamming net model that reduces the dynamic range requirement of the
LCTV-SLM. In this study, we have shown that the Hamming net requires fewer
1nterconnecf1ons than the fully interconnected Hopfield neural net. As a K-
nearest-neighbor neural network model the Hamming net can be rapidly trained,
which requires no analog detection during the training process. These
features make Hamming net particularly suitable for large-scale optical
implementation. We have also shown that the optical Hamming net can be used
as a pattern classifier or an associative memory, if the convergent result is
used to recall the exemplar. One of the important aspects of the modified
Hamming net is enlarging the Hamming distance of the output patterns at the

first layer. This modification relaxes the dynamic range requirement of the
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SLM’s and also reduces the number of iteration cycles in the maxnet. In order
to realize the bipolar nature of the IWM the area-modulation scheme is
utilized. Experimental demonstrations have shown that optical implementation
of Hamming net has a larger processing capacity compared with the optical
Hopfield net. A paper reporting these findings has been published in Applied

Optics [14].

9.12 Optical Novelty Filter (APPENDIX 10.12)

In this period of research, we have presented a novelty fiiter
implementation using a photorefractive BSO crystal in a four-wave mixing
architecture in conjunction with an object phase carrier modulation. The
four-wave mixing technique is advantageous as it does not require a high
intensity laser. The novelty filter is simple to implement since it is
recorded in the Fourier plane. In addition, a phase carrier modulation is
used to separate the higher orders of the object spectrum from the noisy dc
component. Using this modification, the output noise can be suppressed and
the moving object observed at the output plane. In this investigation, we
have found that our optical configuration has a lower laser power requirement
than the two-wave mixing and beam fanning techniques. In addition, fast
response speeds can be achieved using the BSO crystal. To reduce the effects
of the output noise of the system, a phase carrier was used enabling movement
in the input scene to be detected. Using an encoded carrier frequency, this
technique can be used for tracking a moving object. A paper describing this

investigation has been published in Optics Communications [15].
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9.13 PR Compact JTC (APPENDIX 10.13)

In this period of research, we have also investigated applications of a
thick photorefractive crystal (PR) to a compact JTC synthesis. We have shown
that the Bragg diffraction limitation in a thick photorefractive crystal can
be relaxed by using a Galilean telescope in a JTC. However, to preserve the
space--bandwidth product of the system, an increase of the beam compression
ratio M requires a larger transverse size of the crystal. Also the increased
size of the Fourier spectrum may decrease the light intensity at the crystal
and result in slower response times. Nevertheless, this beam compression can
be used to design a compact real-time JTC with a photorefractive crystal. A
technical note of reporting this investigation has been published in Applied

Optics [16].

9.14 Remarks

The ability to process a large quantity of information at a high speed
makes the optical correlator an attractive candidate for applications to
machine vision, target tracking and detection, etc. Although conceptually
simple, the Vander Lugt correlator, which employs a holographic spatial
fiitering technique, has inherent filter synthesis and alignment problems,
that prevent its wide spread practical application. On the other hand, the
Joint Transform Correlator (JTC) is a simple and practical processor that
overcomes these two major disadvantages. In this report, we have performed
the major tasks proposed in the study of the LCTV-JTC and other LCTV based
system, as applied for pattern recognition. We are confident the aim of
realizing a practical adaptive LCTV-JTC for practical application would happen

in the near future.
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Using the hybrid modulating properties of

liquid crystal television

Don A. Gregory, Jeffrey A. Loudin, James C. Kirsch, Eddy C. Tam, and Francis T. S. Yu

The phase modulating capabilities of a commercially available liquid crystal television (LCTV) have been
investigated and applied to the joint transform optical correlator architecture. Operating the LCTV in a
phase modulating mode requires a much smaller coherent light source while still producing a good joint
transform power spectrum and good correlation signals.

. Introduction

The phase modulating properties of liquid crystal
spatial light modulators have been investigated by
several authors.!2 The phase modulating characteris-
tics of liquid crystal televisions (LCTVs) have recently
been reported also.” The results presented here are
for the application of the phase modulating property to
the well known joint transform correlator architec-
ture.* The joint transform correlator, using two
LCTVs, has been operating in the phase mostly mode
at the U.S. Army Missile Command since 1985, but the
phase modulating properties were not well studied.?

Early work with the LCTV always made reference to
removing the attached film polarizers and using high
quality external polarizers.® This approach worked
quite well in the amplitude mode, but the polarizers
made necessary the use of an intense (several milli-
watt) laser source. This was due to the inherent ab-
sorption of the polarizers. Later it was found that
neither of the usual polarizers was really necessary
since phase mode operation can be used. This made
for a much more efficient use of the input laser light
(output power of 1.0 mW) and still gave an excellent
joint transform power spectrum (JTPS).

The phase modulation has been measured during
the course of this investigation, and it was found that
more than 2= of continuous phase change is possible in
normal circumstances. Previously, the method used
to obtain a binary phase modulation from a nematic
LC device is to orient the analyzer perpendicular to the

Eddy Tamand F. T. 8. Yu are with Pennsylvania State University,
University Park, Pennsylvania 16802; the other authors are with
U.S. Army Missile Command, Redstone Arsenal, Alabama 35898-
5248.
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bisector of the fully on and fully off states.” This will
in effect produce a binary phase modulation of either 0
or 7 due to the polarization modulation in the liquid
crystal layer. The continuous phase shift utilized in
this experiment is due to the inherent birefringence of
the liquid crystal. A standard Mach-Zehnder ar-
rangement was used to measure the phase modulation
of the Seiko LVD 202 LCTV.2 This is shown in Fig. 1.
Fringes were observed to shift when the LCTV was
switched off and on and when the brightness control
was changed. Details of the measurements are given
later.

The joint transform optical correlator architecture
is well known; thus detailed operation is not discussed
here.? A sketch of the architecture is given in Fig. 2.
Essentially the two input scenes are joint transformed
by the lens L,, and the transforms interfere in the
Fourier transform plane. If the two scenes are exactly
alike (Fig. 3), the JTPS produced is the transform (of
either identical scene) modulated by a cosine factor
(producing fringes). This fringe structure is then illu-
minated by coherent light (after being displayed on
LCTV2), and the far field pattern is observed with the
aid of lens L,. The diffraction orders shown in Fig. 4
are the desired correlation signals.

ll. Experimental Results

Experimental results are divided into two sections:
those dealing with the actual measurement of the
phase modulation and other properties of the LCTV
and those that deal with the use of the phase modulat-
ing properties in a joint transform correlator.

The first experiment was designed to measure the
light throughput of the LCTV as a function of the bias
voltage. The original back analyzer glued onto the
liquid crystal cell was removed and replaced with a
rotatable polarizer. A video image which is bright
(grey level of 255 on a scale of 0-255) to the left half of
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Mach-Zehnder arrangement for measuring the phase modu-
lation.

Fig. 1.

the screen and dark (grey level 0) to the right half of the
screen was fed to the LCTV. It was discovered that
the LCTV under investigation utilizes a negative logic
in the output signal, i.e., a full grey level in the input
image results in a minimum voltage across the cell,
while the minimum input grey level corresponds to the
maximum voltage applied. In the discussion that fol-
lows, the ON state of the cell refers to the maximum
output signal (minimum grey level) and the OFF state
refers to the minimum output signal (maximum grey
level). Figure 5 shows the output light intensity as a

LCTV1
SF 1

MIRROR

20

Fig. 3. Scene viewed by the input camera to LCTV 1.

function of bias voltage with parallel polarizers. The
maximum contrast ratio is ~34:1.

The next experiment was performed to measure the
polarization modulation effect as a function of bias
voltage. The output analyzer was oriented to achieve
the maximum transmitted light intensity as the bias
voltage was varied. The results of this experiment are
shown in Fig. 6. Extremely good polarization modula-
tion was obtained with the maximum modulated angle
between the ON and OFF states measured to be 90°.
This represents a significant improvement over the
first generation LCTVs where the corresponding angle
for a Radio Shack model was reported to be only 11°.7
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Fig. 2. Joint transform arrangement using two LCTVs.
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Fig. 4. Correlation signals detected by CCD camera 2.
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Fig. 6. Polarization rotation as a function of bias voltage.

The phase modulation property of the LCTV has
also been investigated. The remaining original polar-
izer was removed, and, by using a halfwave plate, the
polarization direction of the illuminating linear polar-
ized light was aligned parallel to the molecular director
on the front surface of the LCTV. The Mach-Zehnder
interferometer shown in Fig. 1 was used to measure the
fringe shift for both the ON and OFF state pixels as a
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Fig. 7. Fringes produced by the Mach-Zehnder interferometer
with LCTV pixels in the OFF state.
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Fig. 8. Phase shift as a function of pixel state and bias voltage.

function of the bias voltage. The results are shown in
Figs. 7 and 8. The maximum phase difference be-
tween the two states was found to be ~340°. This
experiment demonstrates the ability of the LCTV to
provide effective modulation in addition to the well
known polarization modulation effect. Phase-only
modulation can be achieved by setting the bias at the
proper value below the optical threshold (bias voltage
equal to 1.02 V from Fig. 5) and then limiting the
usable grey scale range. However, if the operating
range is not limited, the LCTV is operated in a hybrid
mode; at higher grey scale values it is phase mostly, and
at lower grey scale levels it is a mixture of phase and
polarization modulation. One other feature men-
tioned in earlier publications was also verified here.>3
Phase modulation was observed only when the inci-
dent polarization direction is aligned parallel to the
molecular director on the LCTV’s front surface. No
phase modulation is observed when the polarization
direction is perpendicular to the molecular director.!®

To judge whether the interferometrically observed




Fig.9. Scene of Fig. 3 displayed by the LCTV (with He-Ne illumi-
nation). This illustrates the lack of amplitude modulation.

phase modulation was actually useful for optical corre-
lator application, the.arrangement of Fig. 2 was em-
ployed. It is not correct to assume that just because
the LCTV modulates the phase, the amplitude modu-
lation is not present or important. The photo of Fig. 9
illustrates the amplitude present in the scene as dis-
played in He-Ne laser light. The photo was made just
after LCTV1inFig. 2. Very little amplitude informa-
tion is present in the scene, but it is not exclusively
phase either. The amplitude modulation effect is
probably due to the weak dichroism of the liquid crys-
tal. Light is absorbed more when the plane of polar-
ization of incident light is either perpendicular or par-
allel to the liquid crystal molecules. (Itisimportantto
state that the scene as shown in Fig. 9 was produced by
adjusting the bias voltage on each LCTV toachieve the
best joint transform power spectrum and the best cor-
relation signals as observed by the eye.) Changing the
brightness control on the LCTV changed the relative
amounts of amplitude and phase contributions. The
relative importance of amplitude and phase has been
investigated theoretically and should be studied in
detail experimentally for application to optical corre-
lator architectures.!! The scene of Fig. 9 contained
mostly phase information. This fact was illustrated
by displaying a series of alternating bright and dark
bars on the LCTV. An intensity profile was taken
through the resulting image in He-Ne light. The ratio
of average bright intensity to average dark intensity
was only 1.4:1. Compared to the original scene (Fig.
3), there is practically no amplitude information
present.

The JTPS of the scene of Fig. 3 as detected by CCD
camera 1 is shown in Fig. 10. This scene is often used
for alignment purposes and because the Fourier trans-
form is easily recognized. The scene in Fig. 8 was then
routed to a second LCTV (same model as the first) and
illuminated with an expanded and collimated He-Ne
light (see Fig. 2). The resulting image in He-Ne light
is shown in Fig. 11. The camera was placed directly
behind LCTV2. Again, the LCTV exhibits the behav-
ior observed with LCTV1. The JTPS television was
adjusted as before to produce the best phase-mostly

Fig. 10. Joint transform power spectrum of Fig. 3 as detected by
CCD camera 1 and displayed on a TV monitor.

Fig. 11. Joint transform power spectrum of Fig. 8 as displayed on
LCTV 2 and illuminated with He-Ne light.

image, and as before this scene still contained some
amplitude information. This JTPS produced the
brightest correlation signals. An example is given in
Fig. 4. The light utilization efficiency of this phase-
mostly operation was also measured. In this phase-
mostly mode, a transmission efficiency of 28% was
measured for a single LCTV. The transmission effi-
ciency was determined by measuring the intensity in-
cident on the LCTV and the intensity transmitted by
the LCTV. A transmission efficiency of only 5% was
measured for a single LCTV operated ir: the amplitude
mode. This transmission efficiency was determined
by measuring the intensity prior to the LCTV and after
the output analyzer. This technique assumes a linear-
ly polarized laser output.

ill. Conclusions

The phase modulating property of a LCTV has been
measured and utilized in a joint transform optical cor-
relator. It was found that the LCTV under investiga-
tion can modulate close to 2r of phase under optimum
brightness control (bias) conditions. It was also deter-
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mined that this phase-mostly LCTV operation pro-
duced the best JTPS (more higher-order fringes) and
the brightest correlation signals.

The overall light efficiency of the phase modulation
operation was also measured and compared to the
normal amplitude operation. It was found that 82%
less light is needed when the LCTVs are operated in
the phase-mostly mode. This allows correlators to be
built using much smaller coherent sources—saving
space and expense.
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Effects of thresholding in joint-transform

correlation

Aris Tanone, C.-M. Uang, Francis T. S. Yu, Eddy C. Tam, and Don A. Gregory

The joint-transform power spectrum of two identical objects can be represented as a one-dimensional
sinusoidal grating modulated by a Fourier transform, and the correlation peaks can be regarded as the
first-order diffraction of the grating. The peak intensity and the width are then determined by the
aperture and the modulation of the grating. Based on this analysis, it is shown that dc blocking, hard
clipping, or binarization of the power spectrum results in higher correlation peak intensity and a narrower
peak width. Direct-current blocking is also found to be preferable if the input pattern to the correlator is

corrupted by noise.

Introduction

The use of joint-Fourier-transform correlation in
optical signal processing was first proposed by Weaver
and Goodman! and independently by Rau? in the
1960’s. Recently, because of the availability of real-
time spatial light modulators and recording devices,
there has been much research effort in implementing
the joint-transform correlation process in various
architectures and algorithms. Different techniques
to increase the efficiency and output-plane signal-to-
noise ratio (SNR) have been proposed, including
binarizing the joint-transform power spectrum
(JTPS). This became popular after binary-type spa-
tial light modulators became available.3-15

We analyze the effect of some commonly used
nonlinear recording processes on the quality of the
correlation functions. The input functions are as-
sumed to be two identical functions f (x, y) separated
by a distance 2b on the input plane. The power
spectrum becomes a sinusoidal grating-type function
of spatial frequency 2b/\f, which is modulated by the
power spectrum of f(x, y). The correlation peaks
can then be considered as the first-order diffraction
orders of the sinusoidal grating. Subsequently the
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width of the correlation peak is determined by the
width of the sinusoidal grating, and the height of the
correlation peak is determined by the contrast and
the extent of the grating.!® We show that by apply-
ing hard clipping, dc blocking, or binarization on the
JTPS, we increase the contrast and the extent of the
grating. As a result, the correlation peak intensity
increases and the peak width decreases.

In the following a review of the basic joint-
transform correlation process is given, and the diffi-
culties of linear recording are discussed. A piecewise
linear model is presented to describe various nonlin-
ear recording processes and to give an analytical
insight into how the power spectrum is affected. To
verify the discussions, we give both computer simula-
tions and experimental results.

Linear Recording of the Joint-Transform Power
Spectrum

First, assume that two identical functions, separated
by a distance 2b, are displayed on the input plane of a
joint-transform correlator. The amplitude transmit-
tance at the input plane is

tx,y)=flx-b,y)+flx+b,y) )]

If recorded on a square-law detector, the JTPS be-
comes

H(fo f) = 2|F(f, f)IP1 + cos(dmdf,)],  (2)

where F(f,, f,) is the Fourier transform of the input
function f(x, y) and f, = &/\f, f, = m/\f are the
frequency plane coordinates. For simplicily f; and f,
are normalized to Af. The final correlation is ob-
tained by taking the Fourier transform of the above




————

power spectrum:
8x,y) =2f(x,y) % f(x,y)
+flx,y) *f(x—2b,y)
+f(x,y) % f(x +2b,y), (3)

where % denotes the correlation operation.

Generally the dynamic range of the power spec-
trum H(f,, f,) is much larger than that of virtually
any recording device or material currently available,
including photographic film. Owing to the point-
spread nature of the impulse response of the optical
system, the power spectrum has a high-intensity
component around H(0, 0) and low-intensity compo-
nents that die out rapidly as the spatial frequency
increases. If the intense low-frequency component
is to be recorded, the write light intensity has to be
greatly reduced. The weak high-frequency compo-
nents, in turn, are not recorded. Apparently this
linear recording technique results in only a narrow
sinusoidal grating aperture and subsequently in weak,
broad correlation peaks.

The wide dynamic range of the JTPS is by no
means a new subject to the optics community. At
the inception of the joint-transform correlator, Weaver
and Goodman! discussed an alternative system to
establish a bias point of the H and D curve of the film,
and Rau!” preserved the dynamic range of the detec-
tor by using a dc block to filter out the low spatial
frequencies.

Hard Clipping and dc Blocking

Direct-current blocking can be carried out by simply
inserting an opaque aperture at the center of the
power spectrum. The strong dc component is there-
fore blocked from the detector. The higher-fre-
quency components can then be recorded linearly.
This technique also protects the detector from over-
heating and other typical side effects of optoelectronic
devices such as blooming, internal scattering, and
multiple internal reflections.

Another practical approach to recording the power
spectrum is to hard clip the power spectrum when the
intensity of the spectrum is either higher or lower
than the upper or lower recording threshold values of
the detector, respectively. This can be done, for
examnle, with a microchannel spatial light modula-
tor,5 for which the thresholding values can be adjusted.
The clipping effect produces a binarylike power spec-
trum, depending on the levels of the thresholding.
Mathematically, the hard-clipping effect of the JTPS
in Eq. (2) can be represented by

aH(0,0) for H(f,, f,) = aH(0,0)
H'(f,f)={H(f.f,) forH, < H(f,,f,) < aH(0,0)
0 otherwise 4)

where 0 < a < 1is a scaling factor and H, is the lower
detection limit of the detector. Here, a linear piece-
wise model is presented for the transfer characteristic
of the detector. The spectrum is clipped in some of
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the high-intensity regions, and the rest of the spec-
trum that falls inside the linear region of the detector
is recorded linearly. This transfer characteristic can
be described by Eq. (4) if we set H; = 0.

Owing to the circular-symmetry nature of the
optical system, the circularly shaped region around
the optical axis would be affected the mcst by this
hard-clipped effect. Subsequently we can incorpo-
rate a filter function term in Eq. (4) and write the
modified spectrum as

Hm(fx,fjv) = H(fx’fv) - [H{( f;’fv)

— aH(0, O)lcirc rioJ (5)
The circular function is
r 1 forr <r
circ(r—o - [0 otherwise’ ©

where r = (f,2 + f,2)V2, ry = d/2 is the radius of the
aperture block, and d is the diameter. By writing
Eq. (5), we assume that the circular function is large
enough to cover all parts of the power spectrum
whose intensities are higher than the threshold values.
The value of a determines the thresholding scheme:
it is dc blocking when a = 0 and hard clipping at
various levels when a = 0. It is interesting to note
that the second term of H,,,( f,, f,) resembles the filter
used in a phase-contrast microscope.

Under unity illumination, the complex amplitude
of light at the output plane is the Fourier transform
of Eq. (5):

d?
gr(xvy) =g(xiy) —g(x’y) &® T

2J,[wd(x? + y2)1'?]
nd(x? + y2)l'2

wd?
+ aH(0, 0)

4

2J\[wd(x? + y?)i-?)
.wd(x2 + y2)l,r‘2
(7

where ® denotes the convolution operation and J, is
the first-order Bessel function of the first kind.
Quantitatively the period of the sinusoidal function
in Eq. (2) is proportional to 1/2b, while the Airy disk
radius in Eq. (7) is obtained by p = (x2 + y2)!'2 =
1.22/d, where p is also normalized to A\f. Therefore
if the opaque aperture covers more than four fringes,
thatis, ifd > 2/b, then p = 1.22/d < b/2, or the main
lobe of 2J,(wdp)/mdp is smaller than /2. Physically
this implies that the second term in Eq. (7) would
only subtract a pedestal background term from g(x,
y), owing to the presence of this function J, term;
likewise, the third term would introduce a pedestal
background term to the dc component of gix, y).
If the block radius is reduced further, this Bessel-
function sombrero-shape pedestal term spreads away
from the center with diminishing intensity.- This
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fact was confirmed in a computer simulation. Fur-
thermore, once the high-intensity light around the dc
region is blocked out, the input light intensity can be
increased to enhance the modulation depth of the fringes,
and this will subsequently increase the output correla-
tion peak height and reduce the peak width.

When the input is embedded in white additive
Gaussian noise n(x, y), the amplitude transmittance
at the input plane becomes

tix,y)=tx,y)+nx—-by) (8)
The JTPS is then given as
H,(f.f) =2|F\} + [N} + F\N* + NF,*
+ (F\F\* + NF,*)exp(—4mbf,)
+ (F\F\* + F\N*)exp(4mbf,). (9)
The complex light field at the output plane becomes
gn(x,y) = g(x,y) + n(x,y) @ n*x,y). (10)

In reality, since there is no negative intensity, addi-
tive Gaussian noise is only an approximation. Thus
the cross product of the image transformation F; and
the noise transformation term N is always present.
Physically these additional terms represent noise
that deteriorates the fringe structure of the JTPS.
This noise appears as additional cross-correlation
terms in Eq. (10) that further deteriorate the correla-
tion output.

In addition to hard clipping and dc blocking of the
JTPS, the JTPS can also be binarized according to

1 forH(f,f,) 2 Hu

H(f.f) =1, an

otherwise

where H,, is a threshold level. As we show below,
owing to the point-spread nature of the JTPS, the
binarization must be imposed on the high-frequency
components of the JTPS, which typically carry rela-
tively low light intensity. If we do not block the
high-intensity components, these low-intensity com-
ponents are vulnerable to noise that is represented by
the autocorrelation term of noise in Eq. (10), in
addition to contributions from internal scattering,
internal reflection, and noise that can come from the
CCD camera.

Computer Simulations and Experimental Resuits

Computer simulations were carried out with the
input patterns shown in Fig. 1. The fast Fourier
transform of the input pattern was computed first,
and power-spectrum hard clipping was carried out
according to Eq. (4). The fast Fourier transform of
the modified power spectrum was then computed,
and the correlation results were obtained. The peak-
to-sidelobe standard deviation ratio (PSD) is defined
as the peak height divided by the standard deviation
of the intensity distribution outside the full width at
half-maximum (FWHM) of the peak. (This ratio for
the amplitude distribution case has also been called a
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Fig. 1. Input images used: noise-free reference (upper), noisy
target (lower); SNR = 4.91dB.

SNR.!'%) The peak-to-sidelobe ratio (PSR), defined
as the peak height divided by the average value of the
intensity distribution outside the FWHM region, is
also calculated. Figure 2 plots the correlation peak
heights, the PSD, and the PSR as a function of the
input-image noise level (measured in terms of the
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Fig.2. Variation of the correlation peak heights, the PSD, and the
PSR for the hard-clipping case under various noise levels normal-
ized to their values in the noise-free case and a = 0.01.
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reciprocal of the log of the input-image SNR). The
threshold level is set at a = 0.01 throughout this plot.
As predicted, the peak height, the PSD, and the PSR
of the correlation decrease when the input noise level
increases.

Computer simulations of dc blocking were per-
formed similarly by setting a to zero in Eq. (5). The
PSD and the FWHM of the peaks were first calculated
as functions of the dc block radius r,. The results
are shown in Fig. 3. It can be seen that as the radius
increases, the quality of the correlation signal im-
proves. This is because the JTPS is normalized to
the highest intensity in the spectrum. Conse-
quently the modulation of the fringes and the effec-
tive aperture of the spectrum are both increased.
Lowering the normalization in a computer simulation
is equivalent to increasing the write light intensity or
to reducing the light sensitivity of the square-law
detector. Subsequently the intensity of the correla-
tion peaks increases, and the FWHM decreases.

The effects of additive-input white Gaussian noise
on the correlation output were also studied. The
variation of the correlation peak amplitude, the PSD,
and the PSR as a function of the input noise level are
plotted in Fig. 4 with the same notation as in Fig. 2.
In contrast to the hard-clipping case, in which the
normalized PSD and PSR values gradually decreased
after a certain noise level, the values for this case
showed some anomaly. First they both increased
slightly, ~10% above their values for noise-free and
low-noise conditions, and then they fell off rapidly.
This anomaly can be explained by referring to the
definitions of the PSD and the PSR: the ratio of the
peak height to the standard deviation and the ratio of
the peak height to the mean of the intensity variation,
respectively. Since the numerator for these two
quantities, i.e., the peak height in Fig. 4, decreases
gradually as the noise level increases, then the only
possible explanation is that the denominators de-
crease faster than the numerator. This is in agree-
ment with both the computer simulation and the
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Fig. 4. Variation of the correlation peak heights, the PSD, and the

PSR for a blocking radius of 8 pixels under various noise levels
normalized to their values in the noise-free case.

experiment. By blocking the dc term of the power
spectrum, we also reduce the diffracted light intensity.
This in turn produces a low standard deviation and a
low mean value at the observation window. As the
noise level increases, the fringe structure deteriorates
further; less and less light is being diffracted away,
thus the correlation peaks start to disappear. Then
both the PSD and the PSR decrease rapidly, as shown
in Fig. 4. Other images were tried, and the same
basically decreasing trends were observed.
Experimental demonstritions were also performed
based on the architortur: shown in Fig. 5. For
simplicity, only the reading stage of the joint-
transform correlation is shown. Input patterns were
recorded on 35-mm film, and the JTPS was recorded
by a CCD camera and subsequently displayed on a
liquid-crystal television that operated in an ampli-
tude modulation mode.* Finally, correlation output
was recorded by a second CCD camera. Figure 6
shows that JTPS for an increasing light-intensity
level. The correlation outputs of the corresponding
power spectra are given in Fig. 7. In recording the
power spectrum of Fig. 6(a), care was taken so that
even the strongest light would not exceed the record-
ing dynamic range of the detector. Because of this,

LCTv
bt |
I CCD camera 2
[ ] < '
dal Swp
filter Lad lmaging lons
\CCDGI-I
Input scome
e ITPS B Microcom

/

Fig. 5. Experimental setup: LCTV, liquid-crystal television; FT
lens, Fourier-transform lens.
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Fig. 6. Experimentally recorded joint-transform power spectrum
with increasing writing intensity from (a) to (c).

the higher-frequency components were too weak to
be recorded. Consequently there are no observable
correlation peaks generated or shown in Fig. 7(a).
As the writing light intensity increased, the low-
frequency components became clipped; however, more
fringes in the higher frequencies were recorded.
This in turn diffracted more light to the correlation
peaks. Moreover, as the aperture of the sinusoidal
grating became larger, the diffraction orders became
narrower. This is easily observed in Figs. 7(b) and 7(c).

A dc-blocked and a binarized JTPS for noise-free
inputs are shown in Figs. 8(a) and 8(b), respectively,
and their corresponding correlation peaks are de-
picted in Figs. 8(c) and 8(d), respectively. The bina-
rization is carried out according to the scheme of Eq.
(11), and after subtracting a dc background level of 20
units in a 0~255 range, we obtain a threshold level of
28. It should be noted that, experimentally, the
8-bit analog-to-digital converter we used also imposes

4820 APPLIED OPTICS / Voli. 31, No. 23 / 10 August 1992
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Fig. 7. Three-dimensional plots of the correlation peaks ((a}—(¢)]
for the JTPS shown in Figs. 6(a)-6(c).




{b)
Fig. 8. JTPS of noise-free input cases: (a) blocking radius of ~ 40 pixels and tb) binarized JTPS with a threshold level of 28; their
corresponding correlation outputs are shown in (c) and (d).

a limit on the range of thresholding. When the
threshold level is low, then beyond the level selected
there are no discernible peaks, and below that level only
noisy intensity distributions result. This was consid-
ered in our computer simulation, and the image
intensities were always scaled into a 0-255 gray scale.

Figures 9(a), 9(b), and 9(c) give the output correla-
tion peaks when the input noise is ~ 7.26 dB for the
hard-clipped, the dc-blocked, and the binarized JTPS,
respectively. The peak height shown in Fig. 9(b) is
145, while the peak height for the noise-free case,
shown in Fig. 8(a), is 255. Both have the same dc
background level (20 units) as the other output
pictures. When the experimentally measured peak-
height value for the dc-blocking case of Fig. 9(b) is
normalized to the peak height without noise, shown
in Fig. 8(a), we obtain a value of ~53%. This is in
accordance with the computer simulation results
shown in Fig. 4, in which for this specific noise level,
the normalized peak height is ~0.6. Needless to
say, the result for the dc-blocking case shown in Fig.
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9(b) is much better than the results from the hard-
clipping and the binarized cases shown in Figs. 9(a)
and 9(c).

From the above observations it is concluded that a
properly clipped JTPS, such as the one shown in Fig.
7(c), results in the same correlation output as the
binarized case. Furthermore, a certain degree of
clipping is required prior to binarizing the JTPS, but
once a certain threshold clipping level is exceeded,
further processing has no effect on the correlation
output. When input noise is considered, we see that
both the binarization and the hard-clipping schemes
provide similar correlation outputs. However, the
correlation peaks shown in Figs. 9(a) and 9(c) for the
binarization and the hard-clipping schemes deterio-
rate faster than the peaks for the dc-blocking scheme
shown in Fig. 9(b). All these conclusions support
the fact that enlarging the aperture and enhancing
the modulation index should produce sharper and
higher correlation peaks, but care must be taken
when dealing with noisy input images.

10 August 1992 / Vol. 31, No. 23 / APPLIEN OPTICS 4821
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Fig. 9. Correlation peaks for noisy input cases (SNR = 7.26
dB): (a) hard-clipped, (b) dc-blocking, and (¢) binarized JTPS.
The binarized JTPS is obtained by binarizing the JTPS of (a).

4822  APPUED OPTICS / Vol. 31, No. 23 / 10 August 1992

3
Summary

In summary, some nonlinear effects in the JTPS have
been analyzed, and using a linear piecewise model to
represent the nonlinear characteristic of the spec-
trum, we have demonstrated that hard clipping or dc
blocking the JTPS produces effects similar to the
binarization scheme. Both hard clipping or dc block-
ing enhance the high-frequency content and increase
the modulation depth of the fringes. Direct-current
blocking is preferred, however, because this tech-
nique not only increases the width and the modula-
tion of the sinusoidal grating, it also eliminates the
noise energy content.

Partial support of this research by the U.S. Army
Missile Command through the U.S. Army Research
Office under contract DAAL03-91-0112 is gratefully
acknowledged.
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Phase modulation depth for real-time kinoform

asing liquid crystal television.
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ABSTRACT

The interest of LCTV kinoform has been reported recently by several investigators. The
technique requires modulation depth about 27, for which most of the commercially avail-
able LCTV unable to attain. In this paper, we will discuss an experimental study of
generating an LCTV kinoform, in which the modulation depth is limited by . The ma-
jor drawbacks of the 7 phase variation is that, it reduces the diffraction efficiency as well

as the space bandwidth product to some what degree about one-fourth as compared with

27 variation. Verification of this findings are reported in this paper.
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1. Introduction

Most of the applications of liquid crystal television (LCTV) as a spatial light modula-
tor have utilized the amplitude and polarization modulations of the liquid crystal panel, in
which the comprehensive reference of these effects have been reported by Liu and Chao. !
When incident light is transversely polarized parallel to the front director of a twisted ne-
matic liquid crystal cell, assuming the cell is operated below its optical threshold voltage,
it is well known that a phase modulation would occurs. 2°* Recently, investigators have
utilized the effect of the phase modulation of the LCTV’s liquid crystal panel, by which
Gregory et al* have reported the implementation of the phase modulation LCTV on a join-
t transform correlator, and others have used the LCTV to synthesize real-time holograms
as well as and kinoforms. >~® By using a tailor-made liquid crystal panel, where the lig-
uid crystal at the input and at the output panel are parallel aligned, instead of 90° apart
of the conventional twisted nematic mode, the kinoform can be generated as reported by
Amako and Sonehara. 8 However, the phase modulation in the twisted nematic mode is
subject to certain constraints using different LCTVs. For instance, to obtain a 7= phase
modulation depth using double passed scheme has been reported by Barnes et al 6. Re-
cently, Ogiwara et al ® have also experimentally measured the phase modulation depth of
a Seiko-Epson VPJ-700 projection TV, in which they obtained a modulation depth of .
In this paper we shall using the v phase modulation to generate real-time kinoform, which

is very convenient to achieve using the commercially available LCTV.

2. Statement of the problem
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10-12 ynlike most of the computer

Kinoform is a computer generated phase hologram,
generated holograms that rely on diffraction effect to reconstruct a complex wave field. In
other words, kinoform acts as a Fresnel lens that changes the phase of the iluminating wave
by its thickness variation. When the kinoform is displayed on an LCTV that operates in
phase modulation mode, the thickness variation of conventional kinoform is substituted by
the birefringent effect of the liquid crystal molecules, which varies as a function of applied
voltage and the input polarized light.

Since the kinoform algorithm is well established, we simply wrote a program that al-
lowed us to select either an error reduction or an input-output !? algorithms to generate
a 128 > 128 pixel phase distribution from a real object function. A pseudorandom phase
array is used with the original object to reduce the effect of losing the amplitude infor-
mation in the kinoform. The calculated phase values are then converted into gray scale
intensities, which are saved in a file for later use. In the simulation, the resulting gray s-
cales are converted back to phase variations, for which a short FFT routine is added to
the program for the simulation of the reconstruction process. A mismatch factor a is then
introduced, by which if & = 1, there is a perfect match, and if 0 < a < 1, there is a phase
mismatch. Physically speaking, a perfect match represents the liquid crystal panel that
has a modulation depth of 2w, whereas a phase mismatch represents a phase modulation
depth less than 2.

A 3D-plot of computer simulated results of the reconstructed images, when the mod-
ulation depth is 27 and 7, are shown in Fig. 1(a) and 1(b), respectively. Notice that the

output images have been thresholded to show the surface profile of the reconstructed let-

ter B. However, for unthresholded image, the reconstructed letter is displayed with some
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intensity variation shown in Fig. 1 (d). Thus it is trivial that the noisy effect at _he left-
hand letter in Fig. 1(b) is the non thresholded mirror image, whereas for perfect match
cases shown in Fig. 1(a) or 1(c), the noise structure are clearly suppressed.

Mention must be made that the presence of false images for phase mismatch, have
been advocated by Kermisch and others 13~1¢ follows the publications of the kinoform by
Lesem et al. !* Since the modulation phase for the kinoform is a 2r-modulo of the phase
distribution ¢(z,y), it can be represented by a non-linear limiter input-output model !! as
shown in Fig. 2 (a). The dashed line has been added in the figure to facilitate the Fourier
series expansion of the phase distribution. If the phase variation of the original wavefront
is Z, the reconstructed wavefront from the kinoform would be equal to ezp(jZ'), where we
assume that Z' is a periodic function, for which ezp(jZ') can be expanded into a Fourier

series, such as !

xpl(2') = 5= 3 emeaplim2), 1)
where
om = STl 57 (1N emp2mk(a - m)/), 2
¢ k

and N, is the total number of the discrete levels. If we introduce a parameter 3 to take
the account of the phase mismatch for the kinoform reconstruction, then by substituting

the phase function ¢(z,y) for Z, Eq. (1) can be written as

ezpliZ'} = o= 3 Crnezp{ime(z, ), 3)
with
o = greop{in(l + 8 = m)(1 - 1/N.)) (4

sin(mm/N,) sin{r(1 + 8 — m)}
mn/N, sin{m(1 + 8 — m)/N,}’

4
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If N, becomes infinitely large, Eq. (4) reduces to

sin{m(l1 + 08 — m)}
m(l+ 8 —m)

¢m = ezp{jm(1 + B —m)}

Further more for 8 = 0, we have

sin{m(n —1/N,)}
m(n - 1/N,)

(6)

Cp =

where n = (1 — m/N,). Note that if 3 = 0, the only nonzero term in Eq. (4) is ¢;, for
which we see that ezp(jZ') = e:cp[jgo(z,y)]. If 8 is an integer, the nonzero term in Eq.
(1) will be shifted to n = 1 + 8, in which the reconstructed wavefront would have n times
phase variations. On the other, if 3 is not an integer value, there will be several nonzero
terms in Eq. (1). Needless to say that the n = 0 term represents zero-order (i.e., DC)
term.

The effect of the liquid crystal panel for phase modulation depth lower than 27 can be
represented by the mismatch factor 8, for —~1 < # < 0. The physical meaning of 3 = —0.5
represents that the kinoform generated by the liquid crystal panel has a phase modulation
depth of 7. In that case, we would observed a pair of terms that contain the original
phase function ezp [jgo(:c,y)] and its conjugate as predicted from Eq. (3). These two-
terms would eventually responsible for the real and the virtual images reconstruction from
the kinoform. Thus it predicts the presence of false (conjugate) image, and the intensity
of the false image is inversely proportional to the number of quantization levels N,. For a
conventional process, the phase mismatch mainly depends upon some physical factors in
the formation of the kinoform, such as exposure time, illuminating wavelength, and others.
For real time implementation, the mismatch is dependent on the phase modulation depth

5
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of the device, which is limited by the physical nature of the LCTV. 1=3.7 To avoid the
the overlapping as in the case of on-axis hologram, it required to shift the object from the
optical axis of the kinoform. 1. Thus it is important to know that when we would use a
phase modulation depth that is smaller than 2w, beside the smaller phase modulation, it
also suffer the low diffraction efficiency, and smaller space-bandwidth product compared

with the 27 modulation case.

3. Experimental results

The experimental set-up consists of a standard optical Fourier transform architecture.
The calculated kinoform is sent as gray scale intensity distribution using a Datacube AT-
428 image board to display on the LCTV, which is used a phase modulator. After Fourier
transformation, the magnified image is picked up by a CCD camera and displayed on a
TV monitor.

The LCTV we used is a Seiko LVD-202 with the front and the back polarizers removed.
The phase modulation depth of this LCTV is smaller than 27 if the liquid crystal panel
is modulated by intensity level from 0 - 255. Figure 3 shows a set of fringes obtained
when the LCTV is placed in one arm of a Mach-Zehnder interferometer, for which the
gray-levels ranging from 0 - 255 are sequentialiy displayed on the LCTV panel. We see
that the maximum phase shift is slightly higher than w. This result is also observed by
the reduction of zero order intensity level to its minimum value, when a Ronchi grating
pattern having a maximum gray level of 180 is displayed on the LCTV operating in the

phase modulation mode. '®
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Figure 4 depicts a set of reconstructed images, with different number of quantization
levels, i.e, 2, 4, 8 and 16 using the error reduction method. In order to avoid the bright DC
spot when recording these reconstructed images, we have selected two adjacent pair of the
images having the same image qualities in terms of brightness and similarity to its original
object, for which the bright spots have been blocked. From the results we note that when
the number of quantization level decrease to 2, the real and its conjugate images w,uid
have the same intensity levels.

Since the kinoform image quality has been well established previously, 2! we shall
not attempt to evaluate other than from visual judgment. Figure 5 shows the typical
LCTYV kinoform used to reconstruct the images of Fig. 4. As for a quick comparison,
the result from a 16 quantization level kinoform (using input-output method) is shown in
Fig. 6. From the figure, we see that the false image intensity level is much lower than the

error-reduction method, which is shown in the lower part in Fig. 4.

5. Conclusion

Using a non-linear limiter model described by Lee, !! we have experimentally demon-
strated the kinoform using the phase modulation depth of LCTV that is lower than 2.
However this type of kinoform has a smaller space bandwidth product and a lower diffrac-
tion efficiency. Since most of the commercially available LCTV, the modulation index is
relatively small, by using its * phase modulation, the v phase kinoform device is still a

promising technique for many optical signal processing applications.

The partial support of this research by the U.S. Army Missile Command through the
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Computer simulated result of kinoform reconstruction, (a) with an LCTV having 27
and (b) m, phase modulation depth. (c) and (d) are the 2-D representations of (a)
and (b).

A nonlinear limiter with the input-output relationship shown by the solid line convert
the kinoform phase modulation into reconstructed image wavefront.

The band of fringes obtained when the LCTV was put in one of the arm of a Mach
Zehnder interferometer. The gray levels from top to bottom are 255, 180, 160, 154,
136, 70, 58, and 0, respectively.

The experimental result of kinoform reconstruction using an LCTV having phase
modulation depth slightly over . The number of quantization levels are 2, 4, 8 and
16, respectively, and the kinoform was calculated using the error reduction algorithm.
The kinoform used to reconstruct the image in Fig. 4 (d).

Same as Fig. 4 with 16 quantization levels, but the kinoform was calculated using the

input-output algorithm.

11
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: An optical beam steering device using

a liquid crystal television panel
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ABSTRACT

A blazed grating can be generated using a programmable liquid crystal television
(LCTV) panel. We have shown that LCTV panel can be used for optical beam steering,

particularly for small angle deflection applications.
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Blazed grating ! is one of the conventional optical components to deflect a light
beam from its original direction in an optical system. Generally speaking, the simplest
form of a blazed grating is the sawtooth shape grating, in which the maximum height of
the sawtooth (prism) provides an optical path length of one wavelength, which is equiv-
alent to a 27 phase modulation depth. Following the recent advancement of lithography,
there are score of papers report the fabrication of blazed grating. * However, a blazed grat-
ing is designed for a specific wavelength, and the angle of the prisms and the width of each
groove are fixed. Thus if there is a need to change the deflection angle for the beam s-
teering, either mechanical adjustment is required, or the structure of the blazed grating
is adjustable. There is a need for small angle beam steering to write-in and read-out a
multiplex crystal hologram for optical interconnection, * and a low-cost beam steering de-
vice is needed. On the other hand it has been known that the commercially available
twisted-nematic type liquid crystal television (LCTV) panel can be used as a phase mod-
810

ulator >~7. The LCTV panels have been successfully used to generate kinoforms, and

electro-optics lenses, *2-32 for optical processing. 7-*31* [n this technical note, we provide
some experimental demonstrations by which tunable blazed grating can be generated by
an LCTV panel.

The experimental set-up is basically a Fourier transform system. The LCTV panel
used is a Seiko LVD-202, with its front and back polarizers have been removed. -!" When
the incident light is parallelly polarized to the front director of a twisted nematic liquid
crystal cell and the cell is assumed to operate below the optical thresholded level, the
LCTV panel will behave as a phase modulator, in which the phase modulation depth

varies as a function of the applied voltage. In other words, the thickness variation that
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provides the phase variation in conventional components is replaced by the birefringent
variation of the liquid crystal molecules, which varies as a function of the applied voltage.
We note that the maximum phase modulation depth of this LCTV panel is slightly larger
than = for a 633 nm light source, which can be shown by writing a Ronchi grating pattern
in the LCTV panel or using Mach Zehnder interferometer technique.

The need for a 2r phase modulation depth in a blazed grating is trivial, which is due
to the 2r-modulus of phase shift. As long as the maximum height is set to provide a 2«
modulation index, the blazed grating is equivalent to the effect of a prism with the same
apex angle. By setting the index modulation to 2, the variation of the apex angle affects
the width of the grating, which in turn deflect the direction of the incident beam. If we
assumed that that the blazed grating is placed in an optical Fourier transform system,
the focal spot at the Fourier plane along the axis is shifted, which is perpendicular to the
grooves of the grating.

The experimental results of the beam shifting is shown in Fig. 1(a) to 1(c), where the
original focal spot is depicted in Fig. 1(a), which has been isolated from the rest of the
spots due to the pixelation of the LCTV screen. By reversing the structure of the grating,
the spots have been shifted to the left and then to the right as shown in Fig. 1(b) and
1(c). The presence of high-order terms is due to the Fourier expansion of the saw-tooth
grating, which is corresponds to the deviation of the modulation depth away from 2. !°
However for 2 maximum phase modulation depth of 1.5 instead of 27, the peak intensity
for various diffraction orders can be obtained by the following equation: !°

2

a, = ainc2(3 ~44n) (1)

3




59

where fi is the order of diffraction. Thus for n = 0, 1, 2 and 3, we have

al:al:ad:al =0.09:0.81:0.03:0.01 (2)

The possible reason for the unsymmetric diffraction orders shown in Fig. 1 is attributed
by the pixel structure for which the frame grabber can not map exactly onto the LCTV
panel.

Diffraction efficiency as a function of maximum gray-level for various quantized levels
are shown in Fig. 2, where the width of the grating is about 8 pixels. Noticed that the
diffraction efficiency is defined as the intensity of the blazed-peak divided by the overall
peak intensities. Experimentally, we have found that the diffraction efficiency varies from
50 - 80 % for LCTV blazed grating of various width, in which we assume that the maximum
gray-level and the quantized levels are properly selected. Mention must be made that, in
practice, the diffraction efficiency is always lower than 100 %, which is due to presence of
the dead-zone on the LCTYV panel.

Figure 3 depicts the results for the beam steering using the LCTV panel. From this
figure we see that the brightest part of the characters (WACANA) is moved from left to
right, for which the width of the grating and the number of quantization levels are adjusted.
We note that the width of this set of characters is about 6 mm long. The result shown
in the third row is illuminated by the spot of light under no grating structure is displayed
on the LCTV panel. Thus this demonstration shows that the LCTV panel can be used as
a tunable blazed grating for beam steering. Needless to say that, by properly tuning the
modulation index of the LCTV panel, this characters can be read-out one at a time.

Furthermore, if one uses a 4f optical processing system, where the LCTV panel is

4

|
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placed at the focal plane, an input transparency (contain character G) can be steered at
the output plane as shown in Fig. 5. The presence of the false images !° is primarily
due to different diffraction order as can be seen in Fig. 1(b) and 1(c). To block-out the
false images, a moving pinhole can be inserted in front of the detector. For practical
applications, such as reading or writing a2 multiplex holograms *, the moveable pinhole is
needed unless the modulation depth of the LCTV panel is tuned to 2.

The steering angle of the LCTV panel is primarily determined by the grating width,
which is being dictated by the pixel width of panel, and the modulation depth, which is
being controlled by the crystal cell thickness, the wavelength of light, as well as the applied
field. ® Since the pixel width of current LCTV is about 330 lp/mm, it limits the deflection
angle to about 1072 degree using a focal length of 122 cm.

In summary, we have experimentally demonstrated that a tunable blazed grating
can be used in beam steering application, particularly when small angular deflection is
needed. Due to the lower modulation index of the current LCTV panel, and the imperfect
mapping of the frame grabber, 50 - 80 % diffraction efficiency of the LCTV beam steering
is achievable. We have stressed that the higher order of the diffraction spot can be blocked
out using a moving pinhole. As the LCTV technology improves, the obstacles can be
avoided in the near future, particularly using an LCTV with a phase modulation depth of
27 and smaller pixels size.

The partial support of this research by the U.S. Army Missile Command through the

U.S. Army Research Office under contract DAAL03-91-0112 is also gratefully acknowledge.
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

The experimental results obtained from a tunable LCTV blazed grating (a) Inten-
sity spectrum from the LCTV panel without grating, (b) and (c) show the shifted
diffraction spot due to the reverse grating slopes.

Diffraction efficiency as a function of maximum gray-level of the grating. The grating
width is 8 pixels. Curve a and ¢ are obtained with a quantization level of 8 while
curve c is obtained with a quantization level of 4.

Beam steering demonstration. The focal spot is used to illu_minate the characters
"WACANA’, which about 6 mm wide. The brightest parts show the illumination of
focal spot.

An example of beam steering using a 4f optical processing system. The deflection

angle varies from 0 to 0.08°.
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Intensity Compensation JTC
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Abstract

In this paper, a spatial filtering technique is proposed to sharpen the
correlation peak for a joint transform correlator (JTC) by using the inverse
reference power spectrum. Ways of handling the pole problems are

discussed under various noise conditions. Minimum mean square error

method is used to locate the optimum bias value and to estimate threshold
level as applied to eradicate the poles. Applications to muiti-target
recognition and spectral fringe binarization are also studied. Computer
simulated results show that the compensated JTC performs better as

compared with the conventional JTC.
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L. Introduction

The concept of joint transform under coherent illumination should be
credited to the work by Weaver and Goodman [1]. Due to the advances of
real time spatial light modulators (SLM's), joint transform correlator (JTC)
has become a significant reaitime entity [2]-{4]. However, the correlation

profiles are usually very broad, which reduces the accuracy of detection.

We shall in this paper discuss a technique to enhance the correlation
profiles which reduces spectral dynamic range without creating faulty or
missing detection. Since the unambiguous correlation is an important issue in
signal detection [5][6], avoidance of ambiguity is a major step toward
practical implementation. We shall use linear filtering in this study. Our
effort is to look at a broad range of frequency contents that could contribute
to sharpening the correlation peak intensities. In this study, we shall use an
intensity compensation filter (ICF) to suppress the strong frequency contents,
by which the weaker components can be enhanced. The technique can be
accomplished by using the inverse of the preprocessed reference spectrum.

which is input object independent.

II. Sharpening Correlation Profiles

A JTC consists of a reference and an object functions at the input plane,

1
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as given by

t(x.y)= t(x-b.y) + f(x+b.y). (1)

where 2b is the separation between the two functions. The corresponding

joint Fourier transform is given by

T(p,q) =F(p.q) exp(-jbp) + F(p,q) exp(jbp), (2)

where p, q are the angular frequency coordinates. And the joint transform

power spectral distribution is given as

IT2=QIF12)+(IF”)exp(-2jbp) + (| F 1) exp(2jbp). 3

By inverse transforming the above equation, a set of autocorrelation
distributions can be obtained at the output domain. It is trivial that the joint
transform correlation process can be realized by using a hybrid-optical JTC

as shown in Fig.1.

Let us now assume a spatial filter, H(p,q) generated by the
micro-computer, is used in Eq.(3) to sharpen the correlation profile. Then the

filtered amplitude distribution to be displayed back to the SLM is given by
2

T |
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ITPH=QIFZH)+(IFI?H)exp(-2jbp) + (| F 12 H) exp(2jbp). (4)
We note that if the filter compensated modulation amplitudes (i.e. the last
two terms in the brackets) are constant, i.e.
| F 1> H(p.q) = k, orequivalently H(p,q) =k/|F 2, (5)

then ideal correlation profiles can be obtained at x = + 2b and x = - 2b. at the
output plane, respectively. We see that to achieve a sharp correlation profile.
the spatial filter H(p,q) should be proportional to the reciprocal of the
reference power spectrum. Thus, the modulation amplitude (i.e. | F1* ) can be
self-compensated by using the reference spectrum. However, if the input
object is different from the reference function, the self-compensation effect
is apparently not existing, in which dominant correlation peaks would not be
produced. We emphasize that this self-compensating technique is somewhat
similar to the amplitude compensation matched filtering, as proposed by Sun

et al (7] using a 4-f system.

There are, however, several ways to handle the singularities in Eq.(5),
for which the most commonly used technique in digital processing must be

thresholding the lower end of | F(p,q) I* (called TICF). However, the analysis
3
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of the relationship between the output correlation and the threshold value is
difficult to derive. The empirical range of the threshold values can be found
through series of experimental trials. Our simulation results show that the
thresholding values are directly proportional to noise variance (including
cluttering and background object irradiance) and the proportionality

constant (called threshold ratio) can be estimated by using an artificial noise.
In the case of unknown noise distribution, the threshold value may be
moderately chosen between .005% and 10% of the maximum value of
IF(p,q)i>. Over-thresholding (i.e. too small threshold value) makes the system
vulnerable to noise, whereas under-thresholding would not produce any

effective compensation.

Let us now look at the binary form of ICF (BICF), which is obtained by

choosing a threshold value V. for | F(p,q) 2, such as

V_21F(p.q)|

1,
H(p.q) ={ (6)
0

)
VT >| F(p,q) |

We suress that by using the BICF, some frequency contents of the joint
transform spectrum (JTS) are blocked. The technique has some drawbacks as

compared with the TICF method. Since the modulation amplitude after
4
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compensation is not as uniform as the TICF, the dynamic range requirement
for JTS is expected to be much higher than the TICF method. Nevertheless, a
significant improvement of the output correlation peaks is still achievable by
using BICF as will be shown in the simulated results in the next section. Note
that the distinction between BICF and JTS binarization should be understood,
in which the binarization on the JTS could produce undesirable effects, as

subsequently illustrated by Yu et al [S] and Davis et al [6], respectively.

The optimization of filtering scheme can be formulated according to the

minimum mean square error criterion (MMSE) as

minlt IFFH-k 12, @)

One trivial form of the solution to this equation is

H=k/(IFI?+a), (8)

where "a" is a positive bias to avoid the zeros in IF(p,q)I*. The bias value

should be sufficiently high to reduce the error and the noise effects. Thus.
the problem of Eq.(7) can be reduced to finding the optimum bias given a
priori input noise condition. If we assume that the noise is additive white

Gaussian distributed with zero mean, the MMSE of Eq.(7) can be written as
5
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minll |F*(F+N)H-k 12, (9
where superscript * denotes complex conjugate and N(p,q) is the noise
spectrum. By combining Eqs.(8) and (9), we have
min * 2 min 2
g NEECELND ) s W BN a1t o
IFI™ + a CIF+a

which can be written as

T RN |2 e VERI2 N2 2l
min! J -2 n dpdq=minj j 2 dp dq. (1D
a —00 J—00 a -00 o =00 2

(F12+a) (1F12 +a)

It is apparent that by differentiating with respect to "a", an optimum bias

level can be found, such as

d e R INI?sa e EITONIZ - 2y
_J. J. +a dpdqz‘[ .’.-2 —a dpdq=0. (12
da J—co J-oo 2 —oo 3

9 “ —00 ")
(1F1° +a) (IF1°+a)

Since the noise is assumed white Gaussian, its power spectrum is uniformly

distributed, i.e. | N(p,q) I* = IN(0.0)l 2 which is proportional to the noise

variance o<. Thus, the solution to Eq.(12) is
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a=IN(0.0)*= yo-. (13)
where v is the proportionality constant (called bias ratio). In the first stage,
we shall adjust the bias ratio ¥ by which an optimum correlation peak is

found. assuming tﬂat a noisy object is used. We note that, the estimated noise
variance is available a priori. The major advantage of using MMSE ICF must
be the convenient implementation. From our simulated results, however,
there is a similarity between the TICF threshold value and the MMSE ICF
bias level. in which the optimum bias is very close to the optimum threshold
value. Thus the optimum threshold value for TICF can be calculated based on
the result of Eq.(13). However, TICF produces better correlation profiles and

has higher diffraction efficiency as compared to MMSE ICF.

Based on the preceding analysis, ICF can be modified to fit |

multi-reference functions (MRICF). For example, by using thresholding

method. Eq.(5) can be extended to form a new filter as described by,

Hp.q) =2 k /IF (p.q 12, (14)

where | F; (p.q) | 2 is the power spectrum of the ith reference function and k;

is the corresponding proportionality constant. In this case, we need to adjust
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the values of k;'s, the threshold values for F,'s and the intensity of f.'s, so

that the output correlation peaks produced by each of the object-reference
pairs can reach the same order of magnitude. The working mechanism for
MRICF is shown by an example containing two-object and two-reference

functions, in which each pair is separated by 2b along the x and the y axis,
respectively. Assume that the pair of reference and object functions along

the x axis are identical functions, and the same assumption for the pair of

reference-object functions on y axis. Then the filtered joint transform

spectral distribution would be

| T12 H=41F,cos(bp) + F,cos(bq)* H.. (15)

Furthermore, the modulation terms corresponding to diffracted

autocorrelation signals are given by

2{ I'F, 1>cos(2bp) + | F, 12 cos(2bq) } (k, /1 F 124k, /1 F51%) =

2{(k, + kol F, |/ F, P)cos(2bp) + (k, + k| F, |2/ F, 12 )cos(2bg) }. (16)

Thus, we can see that, each modulation term, after the compensation, is equal
to a constant plus a residue. It is therefore trivial that the constant terms

would produce a sharp correlation peak which is much higher than the
8
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unwanted irradiance resulted from the residue terms.

Another interesting aspect is to apply ICF method ahead of the

l nonlinear operation to reduce the possibility of detection error. A subject to

l study is the fringe binarization of the joint transform spectrum. As pointed
out by Davis [6], the binarization threshold value is very crucial and it affects
the correlation output. We stress that, the optimum threshold value for this
operation is by no mean easy to determine. However, our simulation shows
that, by applying ICF method before the fringe binarization (ICFFB), the
optimum threshold value stays around the spectral mean for different noise
levels, which is rather reasonable to our conjecture. In fact, this conjecture
provides a way to simplify the process of determining a proper threshold

value for fringe binarization.
II1. Simulated Results

Various simulations were obtained by a VAX machine using a
256X256 pixel frame. Figure 2(a) shows a pair of input images, in which one
is used as the reference function. The output correlation distributions
obtained with the conventional JTC (CJTC) and the binary ICF JTC (BICF JTC)

using threshold value of 0.1% off the maximum value of the joint power

spectrum are shown in Figs. 2(b) and 2(c), respectively. In this figure, we see

9




that there is a significant improvement in accuracy ot detection tor BICF JTC.

To investigate the effects due to cluttering, the input object is assumed
cluttered by a shuttle object shown in Fig.3(a). The output correlation
distributions by CJTC and TICF JTC are shown in Figs. 3(b) and 3(c),
respectively. In this figure we see that the ambiguity of detection occurs
using CJTC, whereas the TICF JTC provides a better detection for object

cluttering, in which the accuracy of detection is also improved.

To investigate the effect due to noise contamination. we assume the

input object is embedded in a white Gaussian noise, in which the SNR is

about 5 db shown in Fig.4(a). The output correlation distributions obtained

from the CJTC, TICF and MMSE ICF JTC are shown in Figs.4(b), 4(c), and 4(d),
respectively. It is apparent that both ICF JTC's perform better. In these

results, the threshold level and bias value were chosen to be the product of

the threshold (or bias) ratio and noise strength, where the noise strength is
defined as the product of the l:lOiSC variance and the size of noisy area

divided by the total image size. We have also noted that, the TICF JTC

performs slightly better than the MMSE ICF JTC, since the TICF matches more

closely with the object spectrum.

Multi-reference case is shown in Fig.5(a)® The output correlation
10
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distributions for CJTC and TICF JTC are shown in Figs.5(b) and 5(c),
respectively. We stress that, multi-target detection is always a difficult task
using CJTC. As seen in Fig.5(b), it is not surprising to see the difficulty of
discriminating the autocorrelation peaks from a bundle of other
crosscorrelations. However, using the ICF JTC, all the autocorrelation peaks
are remarkably sharper, in which the crosscorrelation distributions have

been strongly suppressed.

To quantify the performance of the CJITC witt respect to the

compensated JTC. three simulated results are given in the following:

Firstly, it is a measure of the sharpness of correlation peaks, called
peak-to-background ratio (PBR), which is defined as the ratio of the
correlation peak intensity to the average intensity of the correlation signal
inside the field of view but excluding the peak. Notice that, if the peak
intensity is not excluded, PBR would be the same as peak-to-correlation
energy (PCE) ratio used by Kumar [8][9]. In other words, the PBR is directly
dealing with the ratio of the peak intensity to the unwanted background
level, which has the same interpretation as the signal-to-noise ratio, while
PCE measures the ratio between the peak intensity and the overall

correlation intensity.

11




84

Secondly, it is a measure of diffraction efficiency of the correlation
filter. For instance. we are usually interested in the peak intensity [9] instead
of considering the overall correlation distribution, which is more generally
used for the efficiency measufemem of the system [10]. Thus we would
define the percentage ratio of the correlation peak intensity to the overall
spectral intensity as the efficiency measurement, i.e. peak diffraction
efficiency (PDE). The major reason of using PDE is that. it directly measures
the percentage of spectral intensity contributed to the peak. Although PCE
can also be used as a light efficiency measure, yet it does not measure light

efficiency between the Fourier plane and the correlation plane.

Thirdly, it is a measure of discrimination, in which we shall use the
percent of discrimination defined by Ersoy et al {11] to examine the

effectiveness of ICF, that is

A% =100 ( Pnuto B Pcross)/ p:1uto ’ (In

where P and P_ . are the peak intensities of the autocorrelation and the

crosscorrelation, respectively. However, since the object for JTC
crosscorrelation may have different intensity levels with respect to the

reference, this definition is not easy to use in a JTC system. Let us run a test

12




in which the chosen object is a noise tree shuttle image having the same
average intensity as the reference tank image. We have used the TICF
technique to compare with the CJTC. In this simulation. we have shown that
the percentages of discrimination for the CJTC the and TICF JTC are 36.2%
and 70.3%, respectively. It is apparent that TICF JTC offers a high accuracy of

detection.

To further illustrate the effect of the MMSE ICF and the TICF in terms of
PBR, we have plotted the variation of PBR as a function of the bias and
threshold ratios in Figs.6(a) and (b), respectively. The input object used for
the tests is the same object in Fig.2(a) added with four different noise levels.
From Fig.6(a), we see that, the optimum bias is very close to the calculated
result derived in the preceding section. We have also seen that the

variations of the PBR are surprisingly similar in these two techniques.

Figures 7(a) and (b) show the output correlation of PBR and PDE for the
CJTC and the TICF JTC. The correlation peak intensities as a function of the
input SNR are shown in Fig.7, in which we assume that the object noise
strength runs from O db to 40 db. From these plots. we see that the effect of
the ICF JTC is declining downward approaching the CJTC as the input SNR
decreases. Because a large bias or a high threshold value tend to reduce the

ICF's variation range and level the ICF toward a constant value. In other

13
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words, CJTC is an extreme case of ICF JTC, in which the noise level is assumed
infinite, while ICF JTC is designed to achieve a balance of an acceptable noise
immunity and the improvement of detection accuracy. In a normal noise

level (e.g. 0-40 db), we have shown that the PBR of the TICF JTC is almost 30

to 60 times higher than the CJTC, and PDE is about 3 to 27 times higher. .

We further use these two measures to investigate the effect of a JTC
fringe binarization and to find out the attainable improvement by using TICF.
Let us assume that the threshold value in binarization process is equal to the
product of the joint spectral mean and the binarization threshold ratio. The
variations for the PBR and the PDE as a function of the binarization threshoid
ratio are shown in Figs.8(a) and (b), in which the input object is the same as
in Fig.6. From these figures, we see that, the optimum binarization threshold
ratios shifted considerably, due to different noise distributions. Similar tests
for the PBR and the PDE are also plotted in Figs.8(c) and 8(d), using a TICF
before binarization. Both the PBR and the PDE are higher in comparison with
the uncompensated fringe binarization. The significant improvement is that
the optimum binarization threshold ratio for ICFFB is centralized around 1.
In other words, the optimum threshold value is brought to the joint spectral

mean regardless of the noise level.

In another test for ICFFB, the binarization threshold value is fixed at the

14




87

joint spectral mean. and the TICF threshold ratio is assumed a wider range
variable. The variations of the PBR and the PDE. using the same input object.
are plotted in Figs.9(a) and (b), respectively. From the plot of the PDE. we
see that. the optimum diffraction efficiency occurs at about 0.6 for TICF
threshold ratio, whereas the PBR does not vary significantly within the range
of 0.2 to 10 for TICF threshold ratio. This implies that the TICF threshold

value is not a demanding parameter in TICF fringe binarization process.

IV. Concluding Remarks

We have taken the benefit of the power spectrum of the reference
function. by which an ICF can be constructed to improve the correlation
performance and the diffraction efficiency in a JTC. Since the synthesis of the
ICF is basically based on the reference function, the ICF can be regarded as
an object independent fiiter. However, if some information is provided by
the object function a priori, such as estimated SNR, an optimal ICF can then
be synthesized. Although the advantage of the CJTC is its strong resistance to
noise, yet it lacks the sensitivity to discriminate some high spatial frequency
content. On the other hand, the ICF technique would provide an easy
make-up for this drawback by balancing the system noise immunity and the
discrimination sensitivity and accuracy, which can be achieved by adjusting _

the threshold (or bias) ratio. From the simulated results, we can see some
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some significant improvements in terms of discrimination capability and
diffraction efficiency for noisy input object, cluttered object, multi-target
environment, etc.. The technique can also be used in fringe binarization as a
pre-binarization processing, which would ease the problem of determining

the proper threshold level that decreases the risk of faulty correlation peaks.
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Figure Captions

Fig.l An optical joint transtorm correlator
Fig.2(a) Input object and reference functions

(b) Correlation output produced by CJTC

(c) Correlation output produced by BICF JTC
Fig.3(a) Input object cluttered by a shuttle image

(b) Correlation output produced by CJTC

(c) Correlation output produced by TICF JTC
Fig.4(a) Input object embedded in additive white Gaussian noise

(b) Correlation output produced by CJTC

(c) Correlation output produced by TICF JTC

(d) Correlation output produced by MMSE ICF JTC
Fig.5(a) Multi-object and multi-reference functions

(b) Correlation output produced by CITC

(¢) Correlation output produced by TICF JTC
Fig.6(a) PBR as a function of MMSE bias ratio

(b) PBR as a function of TICF threshold ratio
Fig.7(a) PBR as a function of input SNR

(b) PDE as a function of input SNR
Fig.8(a) PBR as a function of binarization threshold ratio

(b) PDE as a function of binarization threshold ratio

19




ic) PBR after TICF compensation
(d) PDE after TICF compensation
Fig.9(a) PBR as a function of TICF threshold ratio for fringe binarization

(b)PDE as a function of TICF threshold ratio for fringe binarization
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Multi-Target Detection Spatial Synthesis JTC
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Multi-target detection using spatial synthesis joint
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Abstract

A spatial synthesis method to improve accuracy of detection for joint
transform multi-target recognition is discussed. The reference function used
for the conventional joint transform correlation is replaced by a synthesized
function for sharpening correlation profiles without using a filter in Fourier
domain. It is shown that the synthesized function can be spatially truncated
to fit multiple reference applications and the effectiveness of this technique
would not be affected by the number of references. The optical
implementation of the synthesized function, effects due to noise disturbance,

background cluttering, and spectral fringe binarization are investigated.
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I. Introduction

Joint transform correlator offers the advantages of simplicity of
alignment and suitable for hybrid-optical processing {1-4]. However, due to
heavy DC content of the input target, it alsp produces relatively broad
correlation profiles, which hinders the application to multi-target detection.
Although this problem can be solved by using an intensity compensation
filter (ICF), it is generally limited for single reference problem [5].
Nevertheless, this problem can be alleviated if a spatial function, whose
Fourier transform (FT) is equivalent to the FT of the reference multiplied by

the ICF can be synthesized.

In this paper, we shall discuss the applicability of this technique for
multi-target recognition, for which a detail will be given and the

implementation of the spatial synthesis will be provided.

IL. Spatial Synthesis

A single SLM JTC is shown in Fig.1, in which the input patterns and the
joint transform power spectrum (JTPS) can be alternatively addressed and

displayed using a microcomputer [3][6]. As it is well known for a




conventional JTC, a pattern f(x,y) is provided as the reference function for
cc;nelaﬁon with respect to an input object function o(x,y). It is trivial that, if
the input object function matches the reference function, i.e. o(x,y)=f(x,y), a
set of autocorrelation peaks can be detected at the correlation output.
However, due to the broad profile of the correlation distributions, low
accuracy of detection would generally occur, and therefore a new reference
function r(x,y) should be synthesized in place of the conventional reference
function f(x,y) to obtain sharper correlation profiles. Let us first set
o(x,y)=f(x,y) to evaluate the pattern matched correlation output. We further
assume that the input object function f(x,y) and the synthesized reference
function r(x,y) are placed at x=+b and x=-b, respectively in the input plane,

by which the amplitude transmittance t(x,y) is written as
t(x,y)= f(x-b,y) + r(x+b,y).

The corresponding joint Fourier transform is

T(p.q) =F(p,q) exp(-jbp) + R(p,q) exp(jbp),

and the JTPS is given as

I TIZ=1FR+IR 12 +FR* exp(-2jbp) + F*R exp(2jbp),

(1
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where the super asterisk denotes the complex conjugation and (p,q) is the
angular spatial frequency coordinate system. It can be seen from Eq.(3) that,

if the FT of r(x,y) is given as

R(p,q) = K /F*(p,q),

where K is a proportionality constant, the output correlations at x=+2b would
become delta functions, which improve the accuracy of detection. Since the
left hand side of Eq.(4) is essentially an inverse filter function that can also

be written as

R(p.q) =K F(p,q) /| F(p,g) 1.

In view of the preceding equation, poles may occur if IF(p,q)I2 approaches
zero. We note that these poles may be completely removed if the

denominator is properly thresholded, that is,

R(p.q) =K F(p.q)/ T{ | F(p,q) },,

where T represents thresholding operation and Vt denotes the threshold
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value which cuts off the lower part of the denominator. Notice that the
thresholded denominator is equivalent to the ICF, in which the Vt would play
an important role in adjusting the system to fit the input noise conditions {5].
A large threshold value will maintain the noise immunity of the JTC as a
conventional optimum correlator. In fact, if Vt is greater than the maximum
value cf IF(p,q)!?, the system would behave as a conventional JTC, for which
it has the highest noise immunity. On the contrary, a small threshold value
would produce a sharper correlation profiles as long as the input noise level
is relatively low. Nevertheless, the trade-off value for an optimum value of
Vt is chosen based on the balance of adequate sharpness of the correlation
profiles and sufficient degree of noise tolerance. It has been shewn in our
previous paper [5] that, when Vt is in the same order of noise intensity, that

is

Vt=ya?,

the ratio of the correlation peak intensity to the average background
intensity [or Peak-to-Background Ratio (PBR)] would be the highest, where y
is a proportionality constant and ¢? is the input noise variance. Since the

spatial synthesis r(x,y) can be regarded as the impulse response of Eq.(6), it

can be written as

107
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r(x,y) =K F-1 { Fip.q)/ T{ 1F(p,a)? }y, } . (8)

where F-! denotes the inverse transform. In view of this result, we see that
the contour of the original pattern f(x,y) would be preserved in the synthesis
of Eq.(8), §ince the phase distribution of the original pattern spectrum F(p,q)
remains unaltered during the synthesis process. This effect can be seen in
Fig.2, in which a set of synthesized spatial functions that correspond to the
original patterns of Fig.2(a) is shown in Fig.2(b). Based on Fig.2(b) a
conjecture may be made that the crucial feature for recognizing the input
targets must be the edges of the original patterns, which is largely
dominated by phase spectrum of the inverse filter. Although the r(x,y) may
be infinitely extended, the spatial truncation of the r(x,y) would not
significantly affect the correlation operation, as long as the optical window of
the truncated r(x,y) is larger than the original reference pattern r(x,y). In the
computer simulations, the truncated window of r(x,y) is chosen as the same
size as the original f(x,y). Thus the output correlation performance would
not be appreciably affected by the truncation, which clears the overlapping

problem for using multi-reference functions in the input spatial domain.

Hence, for N reference patterns, f(x,y), i=1,2,...,N, we have




I EE S u EE aE W

r(xy) = K, F1 { F(p.q)/ T{LIE(P.R }yy } o i=12,...N,

where Vti is the threshold value for the ith pattern and K is the

proportionality constant, which is to maintain its energy level comparable

with the others.

III. Optical Implementation

It can be shown that, if the original reference pattern f(x,y) is a real
function, the corresponding spatial synthesis r(x,y) is also real regardless of

the threshold value. It can be implemented by displaying parts of the
function onto an SLM. In fact, r(x,y) can be decomposed into r(x,y)-T_(X,y),
where r_(x,y) and r_(x,y) are the positive part and negative part of r(x,y)
which can be separately displayed on an SLM. Thus the joint transform
power spectra of the input object function o(x,y) and r_(x,y), and o(x,y) and

r_(x,y) can be captured by the CCD in the respective steps. The joint spectra

of the object and the reference functions, O*R and OR*, can be obtained, by

subtracting this pair of JTPS's with a microcomputer, as given as
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T = {102 +IR,?+0OR,*exp(-2jbp) + O* R exp(2jbp) } -
{102 +IR_2+OR_* exp(-2jbp) + O* R_ exp(2jbp)
= O(R,*-R_*)exp(-2jbp) + O*(R ,~R Jexp(2jbp) + | R,12 - | R 2
= OR*exp(-2jbp) + O*R exp(2jbp) + | R, 2~ I R_12. (10)

It is trivial that the correlation distributions can be seen around x=%2b.

Notice that the spectra content | R 12 - | R_I? can be pre-obtained in the

initialization stage and, by subtracting it from Eq.(10) with the computer, the
unwanted content [i.e., the last two terms in Eq.(10)] can be completely

removed.

IV. Simulated Results

Simulations for spatial synthesis and conventional JTC are provided, in
which a VAX machine of 256X256 picture frame is used. Four patterns and
the spatial synthesis r(x,y) are shown in Fig.2(a) and (b) respectively, in
which each pattern in r(x,y) is truncated to the same window size as the
original pattern in f(x,y). The positive and the negative parts of the r(x,y)

are shown in Figs.2(c) and (d) respectively.

We shall use the set of the original patterns f(x,y) and the set of the

7
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synthesized functions r(x,y) as the reference functions respectively for joint
tra;lsform correlations. First let us correlate with respect to the input object
of Fig.3(a). For simplicity the zero order diffraction will be disregarded in
the simulations. The output correlation obtained with the conventional joint
transform [i.e., using Fig.2(a) as the reference functions] is shown in Fig.3(b),
in which we see that the correlation distributions are severely overlapped.
Thus it produces lower accuracy of detection. On the other hand, Fig.3(c)
shows the output correlation of Fig.3(a) with respect to spatially synthesized
r(x,y). In this result, a pair of distinctive the joint transform correlation

peaks can be identified, which produces a higher accuracy of detection.

Let us now demonstrate for the multi-object detection. Figure 4(a)
shows a set of input objects which are to be joint transform correlated with
respect to the set of reference functions f(x,y) of Fig.2(a) and the spatially
synthesized r(x,y) of Fig.2(b). The corresponding output correlation with
respect to f(x,y) and r(x,y) are provided in Figs.4(b) and (c) respectively,
from which we see that the spatial synthesis technique performs better. The
locations and the correlation peaks can be easily identified using the

spatially synthesized functions r(x,y).

To further demonstrate the performance under noisy condition, we

assume that the input object of Fig.3(a) is embedded in an additive random

8
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noise shown in Fig.5(a). The output correlations using the conventional
reference functions of Fig.2(a) and the spatially synthesized function of
Fig.2(b) are provided in Figs.5(b) and (c). Once again we show that the
spatially synthesized r(x,y) offers better signal discrimination under noisy
environment. Mention must be made that the sharpness of the correlation
profile depends on the threshold value of Vt in Eq.(8). By choosing a
sufficiently large value of Vt under the constraint of Eq.(7), an optimum

peak-to-background ratio can be obtained under a noisy environment.

To investigate the effects due to cluttering and complicated background
scene, Fig.6(a) is used as the input object. The simulated result using the
conventional joint transform correlation is shown in Fig.6(b) and the one
with spatial synthesis method is provided in Fig.6(c). In view of these
results, we see that the one using conventional joint transform correlation
suffers a large degree of ambiguity, while the spatial synthesis method offers
a better performance, in which all the matched correlation peaks can be
identified. Another interesting investigation is to compare the correlation
performances using the fringe binarization of the JTPS for conventional and
synthesis methods. First, we have used a constant threshold value for
binarizing the JTPS of the conventional joint transform. Due to large dynamic
range of the JTPS, a constant threshold value occasionally produces low

quality binarized JTPS. Notice that, by trial and error, a compromised
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threshold level can be found. If the synthesis method is used, a convenient
w;xy to improve the binarized output is to first purge the power spectra of
the reference and the object functions (as discussed in the end of section III),
and then apply the constant thresholding method using the mean of purged
JTPS as the threshold value. The output correlation results using the
conventional

and synthesis methods are given in Figs.6(d) and (e) respectively. From
these figures, we see that there is a miss and a false alarm using the
conventional JTPS fringe binarization method as indicated in the figure. On
the other hand, the spatial synthesis technique avoids using the tedious trial
and error method in finding a suitable threshold value and apparently offers

a better performance.

V. Concluding Remarks

The most frequently used correlation peak sharpening techniques for a
single reference correlator require Fourier domain filtering to accentuate
certain frequency contents of the reference spectrum. Strictly speaking, each
reference function requires a unique filter for the accentuation purpose.
However, these techniques are occasionally inapplicable for multiple

reference joint transform correlations, since the reference spectra are

10
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only using one composite filter. The efficiency and effectiveness of applying
multi-reference filtering technique would substantially reduce as the

number of the reference patterns increases.

We have shown that the spatial synthesis technique can be applied for
multi-reference functions, since it synthesizes a finite sized spatial impulse
response as a substitute for the reference pattern used for the conventional
joint transform correlation. And the spatially synthesized reference
functions can be easily implemented with a current state-of-the-art SLM,
e.g., LCTV, by using a two-step sign decomposition technique. We have
further demonstrated by choosing a proper threshold level, the spatial
synthesis joint transform correlation can be fit for different input object
conditions, e.g. noise, cluttering, etc.. Comparison of the performance
between the conventional and spatial synthesis techniques are provided. We
have showﬁ that the spatial synthesis technique offers a higher signal

discrimination for noisy input, cluttering, and spectral fringe binarization.
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Figure Captions

Figure 1 A single SLM hybrid optical joint transform correlator
Figure 2 Spatial synthesis
(a) Conventional reference functions f(x,y)
(b) Spatially synthesized reference functions r(x,y)
(c) Positive part of r(x,y)
(d) Negative part of r(x,y)
Figure 3 Accuracy of detection using f(x,y) and r(x,y) respectively
(a) A single truck image as the input object
(b) 2D and 3D output correlation obtained using the conventional joint
transform technique [i.e., f(x,y)], in which the zero order diffraction has
been disregarded
(c) 2D and 3D output correlation obtained from spatial synthesis method
[i.e. r(x,y)]
Figure 4 Multi-target detection
(a) A multi-target input object
(b) Output correlation obtained from the conventional joint transform
technique
(c) Output correlation obtained from the spatial synthesis method
Figure 5 Detection under noisy environment

(a) The truck image of Fig.3(a) embedded in an additive white Gaussian
13
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noise with SNR=5db
(b) Output correlation obtained from the conventional joint transform
technique

(c) Output correlation obtained from the spatial synthesis technique

Figure 6 Detection under cluttering condition
(a) Input object patterns cluttered in a complicated scene
(b) Output correlation obtained from the conventional joint transform
technique
(c) Output correlation obtained from the spatial synthesis method
(d) Output correlation obtained from conventional joint transform
technique using spectral fringe binarization
(e) Output correlation obtained from the spatial synthesis method using

spectral fringe binarization
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Application of moment invariant pattern recognition
to optical neural net

F.T.S. Yu, Y. Li, X. Yang, and 1. Lu

Electrical and Computer Engineering Department. The Pennsylvania State University. University Park, Pennsylvania. USA

D. A. Gregory
U.S. Army Missiic Command. Redstone Arsenal. Alabama, USA

distortion invariant pattern recognition is the ultimate

Application of moment invariant pattern recognition to optical goal that we would like to achieve, in this paper, we shall

neural net. Shift, scale and rotation invariant pattern recog-

nition using moment invariants is discussed in this paper. discuss an invariant neural network using the principle of
Calculated moment invariants are coded in binary forms, moment invariant. Application to an optical neural net-
which are used to construct the associative memory in the work is also provided.

neural network. The combination of moment invariants with
optical neural network makes it possible to realize the distor-
tion invariant pattern recognition. Shift and rotation invari-
ances have been experimentally demonstrated with a low- 2. Encoding of moment invariants
cost LCTV optical neural network using the moment

invariant principle. In 1962, Hu has introduced the concept of moment in-

Anwendung der momenteninvarianten Zeichenerkennung in variant to optical pattern recognition (8], by which the
optischen neuronalen Netzen. In dieser Arbeit wird die ver- moment of an image irradiance f(x, y) is =fined as
schiebungs-. skalierungs- und rotationsinvanante Zeichener-
kennung mittels Momenteninvarianten besprochen. Berech- m, , = Ifx" Y fix, y)dxdy, (p.g=0,1,2...). (1)
nete Momenteninvarianten werden in bindrer Form kodiert . .. . . . .
und zur Bildung assoziativer Speicher in neuronalen Netzen ] Apparently,. this definition is not invariant to distor-
verwendet. Die Kombination von Momenteninvarianten mit tion. To obtain the shift invariance, central moment is
optischen neuronalen Netzwerken erméglicht die verzeich- defined as:
nungsfreie Zeichenerkennung. Verschiebungs- und Rota-
tionsinvarianz wurden experimentell mit einem billigen C..=([x? X + Xg, ¥ + Vo) dxdv
LCTV optischen neuronalen Netz unter Verwendung des e =1y S 0: Y + Vo) dxdy,
Prinzipes der Momenteninvarianz bestitigt. rg=012.). (2
where
. _Mo
1. Introduction Xq = ) (3a)
Mo, 0
An image generally contains a large amount of informa _my
tion. for which pattern recognition is usually loaded witr. Yo = Mo o (3b)

heavy and time consuming computation. However pat-
tern reccgnition can be performed more efficiently by the
biological neural net, which has led to intensive research
on artificial neural network (ANN}{1-3]. Because of the
massive parallel operation of the neural net, von Neu-

mann digital computer is not suitable for its implementa- Sign of

tion. Since optics offers the advantage of three dimension- ‘

al (3-D) interconnection and parallel processing, it has o
become a prime candidate for the implementation of +lolofs [111]1 0| «— 10 bit digit part
ANN [4-7]. Although neural network is robust to input 0j0[1]-]0joO]t1]1] *— 4 bit exponent
noise, most of the neural network models are not distor- *

tion invariant (e.g.. shift, rotation and scale variation),

which severely limits the practical application. Since the Sign of

(a) exponent

Received May 23. 1991. In final form July 3. 1991. m
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Don A. Gregory. U.S. Army Missile Command. Redstone Fig. 1. Encoding of moment invariants. (2) The construction of
Arsenal. Alabama 35898, USA. the binary codes; (b) binary code of value 241 x 1073,
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(a) (b)

LcTu Lenstet

L3 Array
Light Diffuser Imaging
Source Lens £co
| LCTu2 Array
o - e

_JA

Fig. 2. Binary code array. (a) English letter “T™; (b) binary code
of its moment invariants.

is the centroid of the image irradiance f(x, y). The central
moments can be further normalized to achieve the scale
invariance:

M, ==t @)

e 1 2
Co.'B(P"'q)/

Hu has also derived seven normalized moment invari-
ants, which are shift, scale and rotation invariant [8). The
first four of the seven moment invariants are repeated in
the following:

P =M, + Mgy, ()
P, =(My o — My ) +4 M, 6
P3=(M30-3M ) +(3M,,-Mo3)*, (0
=My o+ M ) + My, + Mg 3. ®)

We note that these moments have been proven suffi-
cient to discriminate alphabetical characters, which per-
mits the recognition of multisensor imagery [9, 10].

Recently, Yu and Li have proposed the application of
the moments invariants to neurocomputing, for which
they suggested to encode the moment invariants in the
preprocessing circuit prior being applied to an optical
neural network (ONN) (11, 12]. They have shown that
the order of magnitude of moment invariants decreases,
by which the attention can be concentrated to the lower
order moment invariants. In fact, only the first four mo-
ment invariants (i.e., egs. (5)—(8)) have been shown ade-
quate for the recognition. For the implementation on an
8 x 8-neuron network, each of the moment invariants is
encoded into a 16-bit binary signal, in which 10 bits
represent the digit part of the moments, 4 bits are the
exponential part and the remaining 2 bits present the sign
bits. An example of encoding a value of 241 x 10~ 2 into
its binary code is shown in fig. 1. in which the digital part
is converted into a binary sequence as given by

+ (241) D = + (0011110001) B, 9)
and the exponent is converted as
—(3)D = - (0011) B. (10)

Notice that the bright pixels represent the “+™ sign
and the "1 state, while the dark pixels represent the * -~

Fig. 3. The optical neural network.

sign and the “0” state. Since the 16-bit binary code is
folded into 2 rows, the first four moment invariants can
be encoded into a 8 x 8 array. Fig. 2 shows the English
character “T™ and its associated binary code of the first
four moment invariants, i.e.,

P, =241 x1073,
®, = 230x 105,
®, = 106 x 10™*,
and &, = 551 x 1075,

Because of the one-to-one mapping between the mo-
ment invariant sequence {®;} and the image distribution
f(x, y), the binary codes can be used to represent the
patterns without risk, as long as the encoding array has
a capacity to accommodate all the coded exemplars. We
note that the moment invariants are sensitive to noise
{13], that would pose limited practical application. In
order to improve the roustness, the moment invariant
sequences can be applied to a neural network for pattern
recognition.

3. Optical neural network

Notice that the iterative equation of a two-dimensional
(2-D) neural network is given by

N N
Uu(n+1)=f[}: h ﬂxijuij("):l (11)
i=] j=1

where U, and U;; represent 2-D pattern vectors, T, ; is
a 4-D interconnection weight matnx (IWM), and f[-]is
a nonlinear operator which is usually a sigmoid function
for gray level images and a thresholding function for
binary patterns. Since the matrix T can be partitioned
into an array of submatrices, it can be dispiayed on a
spatial light modulator (SLM).

The schematic diagram of a compact optical neural
network with 8 x 8 neurons is shown in fig. 3 [6]. An 80-W
Xenon Arc lamp is used as the incoherent light source. A
Hitachi Model C5-LC1 S inch color liquid crystal televi-
sion (LCTV) and a Seiko Model LVD-202 3 inch LCTV




- .

137

F. T.S. Yu. Y. Li. X. Yang. and T. Lu, Application of moment invariant pattern recognition lo optical neural net 57

(c)

Fig. 4. (a) Four exemplar letters: (b) binary codes of their mo-
ment invariants; (c) positive (left) and negative (right) parts of the
WM.

are used as spatial light modulators. The learning process
is conducted in the microcomputer. The calculated inter-
connection weights are displayed on the Hitachi LCTV
(LCTV1) as a matrix, i.e., IWM, which consists of an § x 8
array of submatrices with each submatrix having 8 x 8
elements. The Seiko LCTV (LCTV2) is used as an input
device to display the input patterns. The lenslet array,
which consists of 8 x8 lenses of 6 mm diameter and
36 mm focal length, establishes the interconnections be-
tween the IWM and input pattern. The lenslet array is
imaged by the imaging lens onto the charge coupled
device (CCD) camera. The overall light through each
specific lenslet is collected by the CCD camera to form an
8 x 8 output array. The detected signals are then sent to
a digital thresholding circuit to perform the nonlinear
operation, for which the final result can be fed back to the
LCTV2 for next iteration.

4. Experimental demonstration

Distortion invariant pattern recognition is demonstrated
using the optical neural network described in the previ-
ous section. In our experiments, English letters are used
as the training set, in which four letters “A”, “C”, “E” and
“T" and their moment invariant encoded patterns are
shown in fig. 4(a) and 4(b), respectively. The interpattern
association (IPA) model has been used to construct the
optical neural network [14]. The IPA model uses the
association among the reference patterns and emphasizes
on the special features of each pattern. The interconnec-
tion weights are determined by simple logic rules. Since
the IPA model is based on the comparison of differences
rather than the similarities of the reference patterns, it has

a larger storage capacity and better performance than the
Hopfield model. The IPA model generates ternary inter-
connection weights. Although the area encoding and
biasing method can be used to accommodate the nega-
tive value of the IWM, the positive and negative parts of
the IWMs are sequentially displayed on the LCTV2 for
simplicity. A subtraction operation is performed by the
microcomputer before the thresholding. The positive and
negative parts of the IWM are depicted in fig. 4(c).

As an example, the character “T” is rotated 90° and
shifted one pixel up and one pixel left. It is then embedded
in 20% random noise, as shown in fig. 5(a). The corre-
sponding encoded moment invariant is illustrated in
fig. 5(b). If this encoded pattern is displayed on LCTV2
of the optical neural network, a convergent result is ob-
tained after only one iteration, as shown in fig. 5(c). Thus
by decoding fig. 5(c), a final result of “T” can be seen
in fig. 5(d). Hence, by applying moment invariant princi-
ple to the neural net, pattern recognition under shift.
rotation and noise disturbances can be achieved. We
stress that since the optical neural network we used has
8 x 8 neurons (i.e., pixels), the scale invariance has not
been tested in our experiment; nevertheless it can be
easily verified using computer simulation [11]. In order to
achieve the scale invariance, more pixels (e.g, 32 x 32
pixels) are needed for the display of the input patterns.
Thus. a large scale optical neural network with adequate
neurons is required.

We further notice that although the decoding (e.g., from
fig. 5(c) to 5(d)) is performed by a microcomputer, it can
be accomplished optically by adding a second neural
layer using a hetero-associative algorithm. Furthermore,
the multilayer structure will make the neural network
more robust to the image distortions as well as to the
input noise.

We have also tested the processing capacity of the
8 x 8-neuron optical neural network, for whichk various
combinations of the English letters are used as the train-
ing set. We have found that the neural network can al-
ways converge to the correct result up to 4 stored pat-
terns and about 40% error probability for 5 stored
patterns, however if the number of the stored patterns is
beyond 6, the network becomes unstable and generally
converges to a “spurious” output, which is different from
all the examplars.

Fig. 5. Experimental result. (a) Letter ““T™ with shift, 90° rota-
tion and 20% random noise; (b) binary code of pattern (a);
(c) output pattern of neural network; (d) decoded result.
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5. Concluding remarks

In concluding this paper, we would remark that, in order
to increase the discriminability and the processing capac-
ity of the neurocomputing, higher order moment invari-
ants should be also considered. However it would require
more pixels for the encoding. Furthermore, since the dif-
ferent bits in the binary code represent the values of differ-
ent order of magnitude, it represents an nonuniformiy
weighted code. For instance, the first bit in the 10 digit
bits represents a value of 512, but the last bit represents
only a value of 1. Because all the bits will be equally
processed in the optical neural network, to improve the
overall performance, either a uniformly weighted code
has to be developed, or the network should be trained to
process nonuniformly (e.g., pay more attention to the
neurons representing the exponent than those represent-
ing the lower digit bits).
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A high-light-efficiency optical neural network that uses a mirror-array interconnection is proposed. Design
considerations for the mirror array and experimental demonstration are given.

Optical implementations of neural nets have been
burgeoning in recent years.” One of the key rea-
sons must be the massive interconnection capabili-
ties of optics, in which either lenslet-array' or
holographic®! interconnections are employed. The
basic distinction between these techniques is that
the lenslet-array interconnection neural network is
essentially an incoherent interconnection system,
whereas the holographic interconnection is coherent.
Although the advantage of using incoherent light is
the capability of suppressing coherent artificial
noise, the lenslet-array interconnection suffers from
low light efficiency, which limits large-scale opera-
tions. To alleviate this shortcoming, we propose
here a mirror-array interconnection method, for
which high light efficiency can be achieved.

Let us recall the iterative equation foran N x N
neuron network, as given by

N N
un(n +1) = 2‘ 21 Tlhijuii(n)]; 1)
i=] jw .

where u, and u; represent the N’-element output
and input pattern vectors, respectively, Tu; is the
N*-element interconnection weight matrix (IWM),
which is partitioned into a two-dimensional array of
submatrices in order to be displayed on a spatial
light modulator, and f(-) represents a nonlinear op-
erator. The IWM submatrices can be intercon-
nected onto the input pattern vector by a lenslet
array.® All the IWM submatrices are imaged onto
an N x N image array, but only one of these images
would be used for the interconnection. It is appar-
ent that the overall interconnection light efficiency
of the system would be reduced by a factor of 1/N?.

To improve the light efficiency of the optical neu-
ral network, we discuss a mirror-array interconnec-
tion technique, as shown in Fig. 1, in which the
IWM and the input pattern vector are displayed
onto two tightly cascaded liquid-crystal televisions
(LCTV’s). As proposed in Ref. 5, the input pattern
is enlarged so that each input pixel element is the
same size as an IWM submatrix. If we assume that
a collimated white light is illuminating the cascaded
LCTV'’s as shown in the Fig. 1, the emerging light

0146-9592/91/201602-0385.00/0

field would be proportional to the product Ty u(n).
If we further assume that an N x N mirror array is
affixed onto a parabolic substrate, then each of the
mirror elements would reflect the product sub-
matrix [TU] submatrices can be detected by the
charge-coupled-device (CCD) detector. By properly
thresholding the array of output signals, an output
pattern vector can be obtained, and it can also be
fed back to LCTV1 for the next iteration. We note
that by using the mirror array for interconnections,
the light efficiency of the system would increase by a
factor of N? compared with the lenslet technique.
As can be seen in Fig. 1 the reflected product sub-
matrices [TU] are not, however, perfectly super-
imposed with respect to each other, and this may
deteriorate the interconnection performance. Let
us now consider a one-dimensional analysis in the

following:
The position error occurs mostly at the edge of the
[TU) submatrices as given by
Na ,
=— 2
€= B (2)

where N is the number of neurons in a row or column
of the two-dimensional input, a is the pixel size, and
B is the maximum allowable angle with respect to
the mirror array, which can be estimated as (in the
paraxial case)

N
= Fcos@
with F the focal length of the parabolic substrate
and 6 the angle between the incident and the re-

flected light beams. By substituting Eq. (3) into
Eq. (2), we have

(3

Néa®
€= 4F’cos’ 0’

in which the position error increases as the fifth
power of the number of neurons (i.e., N°).

Note that the pixel overlapping within the inter-
connected product submatrices [TU] would also de-
teriorate the performance of the system. This is
primarily due to the diffraction effect and the source

C))

© 1991 Optical Society of America
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Fig. 1. Schematic diagram of the optical neural net with
a mirror array.

light \5{
source

(b)
Fig. 2. Shadow-casting imaging configuration: (a) ef-
fect due to a light source, (b) image shifting due to source
size and image broadening due to diffraction.

of the system. For example, an extended light

source would produce a divergent angle as given by
s

a= 5?9 (5)

where s is the source size and f is the focal length

of the collimating lens, as shown in Fig. 2(a).

Figure 2(b) illustrates the shifting effect of the pixel

image, in which the deviation of the shadow-casted
image can be expressed as

Ls

m=m=§, (6)

where L is the distance from the LCTV’s to the CCD

detector. Figure 2(b) also shows the diffraction ef-
fect on a pixel. The spread of the pixel images is
given by
AL
d; = = (7)

where A is the wavelength of the light source.”? We
now restrict the position errors and overlapping
pixel to be within one tenth of the pixel size, which
are the criteria for excellent performance of the sys-
tem. Then we have

With these restrictions, adverse effects of the
proposed mirror-array interconnections can be
minimized.

For example, given a 4 X 4 neuron net, in which
we assume that the pixel size is 2 mm, the distance
between the [TU] plane and the CCD detector is ap-
proximately 300 mm and the focal lengths of the col-
limating lens and the parabolic substrate are 400
and 175 mm, respectively. If the maximum angle
between the incident and the reflected light beams
of the mirrors is 30°, the diameter of the source size
is approximately 0.3 mm, and the mean wavelength
of the light source is 0.5 um, then the position error
of the pixel is ¢ = 0.09 mm < (a/10) = 0.2 mm and
the overlapping pixel is d = 0.19 mm < (a/10) =
0.2 mm, which are within the criteria imposed by
relations (8) and (9). For a system with more
neurons (e.g., 32 X 32 neurons), the architectural
parameters must be carefully designed in order to
satisfy relations (8) and (9).

An optical neural network that uses a 4 X 4 mir-
ror array is shown in Fig. 1, in which two cascaded
Hitachi color LCTV's are used for the generation of
the input pattern and the IWM. As an example, a
training set of four 4 x 4 pixel binary patterns
shown in Fig. 3(a) is used for the construction of the
interpattern association memory matrix. The posi-
tive part of the IWM is shown on the left side of
Fig. 3(b), and the negative part is shown on the right

@
(b)

©
Fig. 3. Experimental results: (a) training set, (b) posi-
tive and negative parts of the IWM, (c) partial input pat-
terns and the corresponding outputs.
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Fig. 4. Results with the space-time-sharing technique:

(a) training set, (b) one partial input pattern, (c) sub-
outputs, (d) composed output.

side of Fig. 3(b). We assume that a partial input
pattern is presented at the input LCTV [shown in
the upper row of Fig. 3(c)]; then a reconstructed
stored pattern can be recalled, as illustrated in the
lower row of Fig. 3(c).

Since the space-bandwidth product of the 4 x 4
mirror-array neural net is rather limited, we have
also used a space-time-sharing technique® for the
determination, in which the six 8 x 8 pixel roman
letters shown in Fig. 4(a) are used as the training
set. The interpattern association IWM is parti-
tioned into 2 x 2 sub-IWM’s, which are sequentially
displayed on LCTV2 with the input subpattern
displayed on LCTV1. By thresholding the output
signal array, an output subpattern can be recon-

142

structed. We illustrate one partial input pattern P
in Fig. 4(b). The corresponding output subpatterns
obtained with the mirror-array interconnection are
shown in Fig. 4(c). And the final composite results
obtained with this proposed technique are given in
Fig. 4(d), in which we see that fully reconstructed P
is obtained.

In conclusion, we have presented a highly efficient
optical neural net using a mirror array for intercon-
nections. By replacing the commonly used lenslet
array with the mirror array, we increase the light
efficiency by a factor of N2. The overall perfor-
mance of the system depends on the source size, the
diffraction effects, and the focal length of the
parabolic mirror-array substrate. In short, the syn-
thesizing of a large-scale mirror array for optical
interconnections is possible, for which experimental
demonstrations are provided.

We acknowledge the support of the U.S. Army Mis-
sile Command through the U.S. Army Research Of-
fice under contract DAAL03-91-G-0112.
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interpattern-association neural network

Xiangyang Yang, Taiwei Lu, Francis T. S. Yu, and Don A. Gregory

We have shown that introducing interconnection redundancy can make a neural network more robust.
We describe performances under noisy input and partial input that show that the optimum-redundant
interconnection improves both the noise tolerance and the pattern discriminability. Simulated and
experimental demonstrations are also provided.

l. Introduction

There is much interest in neural networks, which is
due primarily to their brainlike processing capabili-
ties.”** Although neural models were proposed a few
decades ago, the resurgence of interest is due to the
development of the Hopfield model.** The Hopfield
model uses essentially the outer-product method to
construct the interconnection weight matrix, which
emphasizes the intrapattern associations but ignores
the associations among the patterns. In other words,
the Hopfield network becomes unstable for patterns
of great similarity (e.g., fingerprints, handwriting).

We recently introduced an interpattern-association
(IPA) algorithm in an optical neural network,'*" in
which the special and the common features among
the reference patterns can be determined. However,
we show here that the interconnection for an IPA
network would be highly redundant. Although a more
highly redundant interconnection would produce
higher noise immunity, the discriminability would be
reduced. We show, however, that the overall perfor-
mance of a neural net should be improved, if an
optimum-redundant-interconnection network can be
found.

il. Interpattern-Association Model

We note that the excitatory and the inhibitory inter-
connections of an [PA neural network can be deter-
mined by using the logic operation illustrated in Fig.
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1. Assume that three reference patterns are situated
in the pattern space, in which the special and the
common subsets are defined. If the states between
two different subsets are complementary (e.g., P,P,P,
and P P,P,), then these subsets are called opposite
subsets. Thus, when an input neuron in a subset is
excited, all the output neurons in the same subset will
be excited, but the output neurons in the opposite
subset will be inhibited. In other words, if an input
neuron in P,P,P, is excited, the input pattern has the
features of the P, and P, patterns but has no features
of pattern P,. Therefore this neuron will excite all the
output neurons within P,P,P, and inhibit all the
output neurons in P,P,P,. Thus, by using this logic
operation, we would not find a redundant interconnec-
tion between the input and the output neurons.

By using logic-operation rules, we observe that the
output neurons within the common subsets will be
excited not only by the input neurons but also by
those belonging to the special subsets. However, the
output neurons represented by the special subsets
would be excited by the input neurons belonging to
the special subsets. In other words, subsets in a
higher order would be excited by the lower-order
subsets, but this is not true for the reverse. For
instance, output neurons belonging to P,P,P,, (i.e.,
second order) would be excited not only by the input
neurons that belong to P,P,P, but also by the input
neurons within P,P,P, and P,P,P, (i.e, first order).
Because the common features P,P,P, represent the
third-order subset, the neurons within this subset
can be excited by all other subsets. Because the
special features P,P,P,, P PP, and P P,P, are at the
lowest order, they can be excited by only themselves.
It is therefore apparent that the common features
would have more redundant interconnections. The
redundancy level of excitation can be defined as the
difference in the orders of interconnection. The redun-




Fig. 1. Representations of the reference patterns in a pattern
space. Subsets are categorized into three orders: P,P,P,, P,P,P,,
and P,P,P, are in the first order; P;P;P;, P;P,P,, and P,P,P, are in
the second order; and P,P,P, is in the third order.

dancy level of inhibition can be determined in the
same manner.

It can be seen that with the [PA algorithm the
common features are enhanced, whereas the special
features are relatively suppressed. Thus the neural
net is less effective in recognizing patterns of great
similarities. For example, the letter P has all the
common features of B and R. An input letter B to the
IPA neural net may produce an erroneous output P.

There is, however, an advantage to implementing
redundant interconnection in a neural network, for
which a greater input-noise immunity is provided.
The conjectural performance of a redundant intercon-
nection with respect to the input-noise tolerance and
the pattern discriminability is plotted in Fig. 2, in
which an optimum-redundancy level can be found.

Performance of network

[

opt Redundancy level
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il. Redundant-interconnection
Interpattern-Association Model

In this section we discuss a redundant-interconnec-
tion IPA (R-IPA) network, in which a set of binary
reference patterns, P,, P,, ..., P,, is stored in the
memory matrix. The excitation and the inhibition
interconnections can be determined by the following
logic operations:

S.=PP, . PP.B....P,. (QsksM (n

Se=PP,..PPB. . P....P. (<sms<M. (2)

Thus the differences between the excitatory layers
(ELD) and the :nhibitory layers (ILD) are given by

ELD=M -4 (m > k), (3)

ILD=k-m (m < k). 4)

Because the ELD and the ILD can be bit-by-bit
computed, they are the number 1 states obtained
fromS,, - S, and S, — S, respectively. In the case
of the —1 state in S,, — S, or 5, - S,, the -1
represents a null interconnection. Thus the maxi-
mum layer differences in the excitatory and the
inhibitory interconnections would be

ELD . =M-1, 5

ILD_,. =M -2 (6

Let ERL and IRL be the redundancy levels of the
excitatory and inhibitory interconnections. If ELD <
ERL, the corresponding output neurons will be ex-
cited. On the other hand, if ELD > ERL, no intercon-
nection will be provided between the input and the
output neurons. Similarly, the output neurons will be
inhibited for ILD < IRL, and there is no interconnec-
tion between the input and the output neurons if
ILD > IRL.

An example of redundant interconnection is shown

Fig. 2. Hypothical performance of a redundant interconnection.
R, optimum-redundancy level; I noise tolerance: iI, discriminabil-
1ty.
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sy

ir Fig. 3. in which three binary reference patterns are
stored in the memory matrix and each pixel is as-
sumed to equal one neuron. Let us look at the
relationship between input neuron 3 and output
neuron 1, by which we have S, - S; = 0 1 1, which
implies that ELD = 2. If the ERL is equal to 1, input
neuron 3 and output neuron 1 should nat be intercon-
nected, as Fig. 3(b) shows. However, if ERL = 2, then
there will be an excitatory interconnection (+1) be-
tween these two neurons, as shown in Fig. 3(c).

Inhibitory interconnection can be determined in
the same manner. For instance, with respect to input
neuron 3 and output neuron 4 we have §, - S, =01
0. by which ILD = 1. If we assume that IRL = 0, then
these two neurons should not be interconnected,
whereas, if IRL = 1, there would be an inhibitory
interconnection (~1) from input neuron 3 to output
neuron 4, as shown in Fig. 3(c).

Furthermore, when input neuron 1 and output
neuron 4 are considered, we have S, - S, = -1 -10
and §, - S, = 0 0 —1. Because these results yield —1
states, there should be no interconnection among
them, as can be seen from Figs. 3(b) and 3(c),
respectively.

It is apparent that the IPA logic operation can be
easily extended to M reference patterns, by which the
subset X,

X=PpP,. . PP, ,+P,+ - +Py
=pPpP,.. PP .P.... B, (1lskxsM, &)
%
%
%

(b)

©

02

1 (excite)

-1 (inhidit)

Fig. 3. Construction of a R-IPA model neural network. (a)
Reference patterns, (b) interconnection for ERL = 1 and IRL = 0,
t¢) interconnection for ERL = 2 and IRL = 1.
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will excite all the neurons in the following subsets:

P,=pPpP, . PP, P.,. P, msh, e

and inhibit all neurons in the P, subsets,

Po=(P + P+ PP, Py~ Py)

=P1P2"'F~P.onpnoz"'Pu (1 snx<k). (9)

It is trivial to show that, for ERL = ERL, =M -1
and IRL = IRL_,, = M — 2, the same result can be
derived from the R-IPA algorithm, in which we have
proved that the IPA neural network is indeed a
maximum-redundant-interconnection network.

V. Minimum-Redundant interpattern-Association
Model

The logic-operation rule for achieving minimum-
redundant IPA interconnection by which the output
neurons will be excited by the neurons in the same
subset and will be inhibited by the neurons in the
opposite subset was discussed in Section III. Because
there are no interlayer excitatory and inhibitory
interconnections, the network is indeed a minimum-
redundancy interconnection network. In other words,
the minimum-redundant-interconnection IPA (MR-
IPA) model is a special case of the R-IPA model. To
verify this fact, we can simply assign a zero redun-
dancy level to the excitatory and inhibitory intercon-
nections, i.e.,

ERL = IRL = 0. 10
The minimum-redundancy interconnection weights
for M binary patterns (assume that each has N pixels)
can be written as

T, =h

M
3 P,(m)P,(m)]. an
mwu}

where h[] is a three-level hard-limiting function, i.e.,

x=M
-M<x< M
x=-M

|1

As for the Hopfield model, the interconnection weights
can be written as'?

LJ i=j
> P.m)P,(m)

T, = (13)

0 i=j

where T represents a multivalue memory matrix. For
practical implementation, T is clipped into a tristate
function, as given by

4

=
"

M i =J
> P.(m)P,(m)
mei ] ,

(14)
| 0 =]

e




Number of the error pixels
N

L4
0 10 20

Number of reference patterns

Fig. 4. Performance under 20% noisy inputs: I. Hopfield model;
II, IPA model; and [II, OR-IPA model [ERL = int(0.3M),
IRL = ERL - 1].

BCDEFGPRXZ
BUGEFSERAE

BCDEFGIFRXZ

Fig. 5. Simulated resuit with the OR-IPA model.

where
x2GC
g[x]= 0 -G<x<G. (18)
-1, x5 -G

We note that for most cases G = 0. We further see
that, as G increases, the number of interconnections
decreases. It is therefore apparent that the least-
interconnection network occurs at G = M. Under this
condition, Eq. (14) would reduce to Eq. (11), except
for the diagonal elements T, , ¢ = 1,2,3, ... N. Thus
we see that the MR-IPA interconnection can be
derived from either the R-IPA model or the Hopfield
model. In other words. the Hopfield model and the
R-IPA model would be the same if all the redundancy
interconnections were eliminated. However, the basic
distinction between the R-IPA and the Hopfield mod-
els must be in the way that redundancy is introduced.
In the Hopfield model, the redundancy is introduced
based on the informati;n within e:ch of !tht_a sto}:gd

hat ignores the interpattern relationship.
?)a::t:;\:sotther g:nd. the redundancy in the R-IPA
model is based on the interpattern association among

s.

th&rseto Fﬁ‘}tﬂ:‘,w;gw that without the redundancy
interconnection the MR-IPA neural network would
have the lowest input-noise tolerance compared with
all the R-IPA models. However. the MR-IPA model
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Fig. 6. Performances for partial inputs. I, Hopfield model; I1. IPA
model; and [I1. OR-IPA model (ERL = int(0.3M), IRL = ERL - 1.
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Fig. 7. Simulated result with the OR-IPA model.
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Fig. 8. Optical neural network with cascaded LCTV's; CCD.
charge-coupled device; PC, microcomputer.

possesses the highest discriminability for patterns
with similarity. Because the MR-IPA neural net has
the least interconnection, it should have the merit of
applications to data-reduction assessment, e.g.,
weather forecasting, earthquake predicting.

Simulated and Experimental Resuits

We first simulated the Hopfield and the R-IPA models
using various redundancy levels in an optical neural
network. Twenty-six capital Roman letters were used
as the training set. If the input pattern is contami-
nated with 20% noise, the output results show that
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Fig.9. Experimental results from (a) training sets, (b) partial input, (c) the IPA model, and (d) the OR-IPA model.

the optimum-redundancy (OR) level, R, occurs as
shown:

ERL,,, = int(0.3M),
IRL,, = ERL,, - 1, (16)

where int(-) represents an integer function and M is
the number of reference patterns. We stress that the
empirical formulas used to estimate optimum redun-
dancy at different noise levels can actually be derived
with a larger database simulation.

The error rates, as a function of stored patterns,
are also plotted in Fig. 4. We see that the Hopfield, the
R-IPA, and the OR-IPA models can sustain 4, 8, and
10 patterns, respectively. Thus the OR interconnec-
tion is capable of improving the performance of a
neural network under noisy conditions. A simulated
result for the OR-IPA model with 10 Roman letters is
shown in Fig. 5. The middle row represents the input
patterns with a 20% error rate, whereas the bottom
row represents the reconstructed output patterns.

Furthermore, performance under partial inputs is
also provided. The OR levels are found to be

ERL,, = int(0.5M),

Once again we see that the OR-IPA model performs
bﬁtter than the Hopfield and the IPA models, as Fig. 6
shows.

Because the R-IPA interconnection weights empha-
size the interpattern relationship, the features of the
stored patterns play an important role in pattern
recognition. It is therefore apparent that the stored
patterns should retain this main feature; otherwise
erroneous results would be produced. Figure 7 shows
a simulated result obtained by using the OR-IPA
model. The middle row represents a set of partial
input letters that contain the major features. The
reconstructed letters are shown in the bottom row, in
which 9 of 10 letters can be completely recalled.

Figure 8 shows a cascaded liquid-crystal TV (LCTV)
neural network'*'* that we have used for our experi-
mental demonstrations. Because the interconnection
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weight matrix and the input pattern vector are
displaced in the LCTV’s, the emerging light field is
proportional to the product of T,,,U, vectors. Notice
that these emerging light fields are then incoherently
added with a lenslet array imaging onto the charge-
coupled device (CCD) camera, and the array of output
signals can be thresholded to yield the output resuit.
The output result can also be fed back for the next
iteration.

For experimental demonstration, the letters B, E,
F, P, and R are used as the training set for which each
letter is represented by an 8 x 8 pixel array.
Figure 9(b) shows a partial input that contains the
main feature of B. The results with the IPA and the
OR-IPA models are given in Figs. 9(c) and 9(d),
respectively. By comparing these two results, once
again we see that the OR-IPA model performs better
than the IPA or the Hopfield models.

Conclusions

We have introduced a R-IPA model to improve the
performance of the neural network. Although redun-
dant interconnection is more robust, it reduces the
discriminability for pattern recognition. Neverthe-
less, under noisy-input and partial-input situations,
the redundant-interconnection network performs bet-
ter. We have shown that, compared with the Hopfield
and the IPA models, the OR-IPA neural network
improves the robustness and the pattern discrim-
inability.

We acknowledge the support of the U.S. Army
Missile Command through the U.S. Army Research
Office under contract DAAL(03-87-0147.
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A polychromatic optical neural network using cascaded liquid crystal televisions (LCTV) is presented and simulated which
uses a polychromatic interconnection weight matrix (IWM) for color pattern recognition. Extension of the polychromatic neural

net for multichannel operation 1s aiso propased.

1. Introduction

Optical implementation of neural networks was
initiated by Psaltis and Farhat in 1985 [1.2]. Since
then various optical architectures have burgeoned
[3-10]. The associative memory interconnection
weight matrix (IWM) in those neural nets were either
gencrated by spatial light modulators (SLM) [1-7]
or hc 'ngraphic memories [8-10]. It was the paral-
lelisr  .nd massive interconnection properties of op-
tics that made it a primary candidate for large scale
implemen: ition.

We have recently presented an optical neural net-
work using inexpensive pocket-size liquid crystal tel-
evisions (LCTVs) where the IWM was displayed on
the LCTV with a microcomputer {4-6]. This LCTV
neural network architecture is basically a hybrid op-
tical-digital system where the parallelism and inter-
connectivity of optics is exploited. Currently avail-
able LCTVs are built with color liquid-crystal panels.
which makes them particularly suitable for appli-
cation to color neural nets.

There are two major operations in an artificial
neural network (ANN), i.e., the learning phase and
the recognition phase. In the learning phase, the in-
terconnection weights among the neurons are de-
cided by the network algorithm, which is imple-

mented by a microcomputer. In the recognition
phase. the ANN receives an external pattern and then
iterates the interconnective operation until a maich
with the stored pattern is obtained. The iterative
equation for a two-dimensional (2D ) ANN is given
by

N

N

Ulk(n+l)=f(z z 7-”(1/(',1}(”))- (1)
=1 =

where Uy and U, represent the 2D pattern vectors.

Ty, is a 4D IWM. fdenotes a nonlinear operation,

which is usually a sigmoid function for greyievel pat-

terns and a thresholding operator for binary patterns.

2. Polychromatic neural network

A schematic polychromatic neural network is
shown in fig. 1 where two LCTVs are tightly cas-
caded for displaying the input pattern and the [WM.
respectively. To avoid the moiré fringes resulting
from the LCTVs, a fine layer diffuser (e.g.. Scotch
tape) is inserted between them. To match the phys-
ical size of the IWM, the input pattern can be en-
larged so the input pattern pixel is the same size as
the submatrix of the IWM. This is illustrated in fig.

0030-4018/92/305.00 © 1992 Elsevier Science Publishers B.V. All nghts reserved. 81




Volume 88, number 2,3
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Fig. 1. Schematic diagram of the polychromatic neural network
using cascaded color LCTVs.
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Fig. 2. Display formats for the input pattern and the IWM. (a)
Input pattern, (b) IWM.

[Flls]e]"][<]
uﬁna
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Fig. 3. Pixel structure of the color LCTV.

2. The summation of the input pattern pixels with
the IWM submatrices can be obtained with a lenslet
array by imaging the transmitted submatrices on the
CCD array detector. By properly thresholding the ar-
ray of detected signals, they can be fed back to
LCTV1 for the next iteration.

The liquid crystal panels often used are the Hi-
tachi C5-LCI color LCTVS. The color pixel distri-
bution is depicted in fig. 3. Every third neighboring
RGB pixel element is normally addressed as one pat-
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tern pixel (called a triad). Although each pixel ele-
ment transmits primary colors, a wide spectral con-
tent can be produced within each triad [11]. If we
denote the light intensity of the pixel element within
a triad as Ix(x, p), Ig(x, y) and Ig(x, y), then the
color image intensity produced by the LCTV is

I(x,y)=Ig(x,y) +Ic(x, y)+1a(x,y), (2)

where (x, y) represents the spatial coordinates of the
liquid crystal panel.

A block diagram of the polychromatic neural net-
work algorithm is illustrated in fig. 4. A set of ref-
erence color patterns is stored in the neural network,
then each pattern is decomposed into three primary
color patterns as the basic training set. For the learn-
ing phase, three primary color IWMs (i.e., IWMg,
IWMg, and IWMyg) should be independently con-
structed allowing a multicolor IWM to be displayed
on LCTV2. If a color pattern is fed into LCTV1, the

Color_IWM

Outputs

Fig. 4. Block diagram of the polychromatic neural network
algorithm.
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interative equation of the color neural net should be

N N
Uu.»("+|)=f(z Zl U Tuylr [Uy(n)]r

=1=

+ ([ Tu,lc (U, (n) ]G+ (Th,le [Uu(")ln})- (3)

It is then possible to reconstruct (i.e., recognize) the
color pattern after some iterations.
We shall now demonstrate the operation of the

el Ed "
L |
hliviln-lli.-l.-—l.——ll.-ll-—llnnl
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color neural net through computer simulation where
a set of 8 X 8 triad polychromatic reference patterns
in fig. 5a is used as the training set. We used the in-
terpattern association (IPA) algorithm [12,13] for
the construction of the polychromatic IWM. The
positive and the negative parts are shown in figs. 5b.c,
respectively. To illustrate the recognition phase of
the neural net, a partial pattern of fig. 5d is applied
to the input LCTV 1. A fully recovered color pattern
shown in fig. 5e is reconstructed, with only one it-

Fig. 5. Autoassociative memory for color patterns. (a) Reference patterns, (b) positive part of the IWM, (c) negative part of the IWM,

(d) a partial input pattern, (e) reconstructed output pattern.
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eration. From this simulated result, we see that the 3. Multichannel neural net
proposed neural net should indeed be capable of ex-
ploiting the spectral content of the pattern.

Since each triad of the LCTV consists of three RGB

Fig. 6. Character translations. (a) Input training sets, (b) output training sets. (¢) positive part of the IWM. (d) negative part of the
IWM. (e}). (f) and (g) partial inputs and the corresponding translated outputs.
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pixel elements. the storage capacity of the polychro-
matic neural net can be increased three times. For
example. three disjoint sets of black-and-white train-
ing patterns can be encoded into the RGB primary
colors. The (IWM )R, (IWM)g, and (IWM), are
constructed by each set of training patterns. It is ap-
parent that if a pattern belongs to any of the training
sets. only the precise primary color IWM would ef-
fectively respond to the input pattern. In other words.
the neurons of the encoded (IWM)g, (IWM)g, and
(IWM); will be properly connected to produce a
matching pattern originally encoded in one of the
primary colors. By thresholding the output signals
detected by the CCD array detector. i.e..

A N
[L'/k(n+ 1 ) ]S =f( z ZI ':[T/lm]S [("1/(”) ]S}) .

=\ =

forS=R.G.B. (4)

a recalled (1.e.. recognition) pattern with a specific
primary color is reproduced.

To demonstrate the implementation of the mulu
channel neural net. we extend the IPA model to het-
ero associative memory for exhibiting conversions
from one set of functions to another. in our example,
alphabet translation. The input-output training sets
are given in figs. 6a. b, respectively. The real input
English letters (upper row) will translate into red
Chinese characteres. the green color Chinese char-
acteres (second row) will translate into green Jap-
anese Katakanas. and the blue color Japanese Ka-
takanas (third row) will transtate into blue English
letters. Applying the heteroassociation model [14],
the positive and the negative parts of the multichan-
nel IWM are shown in figs. 6¢, d. respectively. If a
partial pattern of A is fed to the neural net, a trans-
lated Chinese character in red is produced as shown
in fig. 6e. Similarly, a partial pattern of a Chinese
character translates to a green color Japanese Ka-
takana. and a partial Katakana translates back to
English letters as shown in figs. 6g, f. Thus we see
that the polychromatic LCTV neural net can prob-
ably be extended to multichannel operation.

4. Experimental demonstration

The experimental demonstration of the wave-
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Fig. 7. Experimental results. (a) Translation using red channel.
(b) translation using blue channel.

length multiplexed multichannel neural net has been
conducted. The same input-output training sets are
used in the experiment for which the polychromatic
IWM is shown in fig. 6. When a red color A is rep-
resented to the neural net. the translated Chinese
character is produced, as shown in fig. 7a. Similarly.
when a blue color Japanese Katakana is fed into the
neural net. a blue color A is transmitted as shown in
fig. 7b. There is, however. some degree of color cros-
stalk among the channels as observed in the exper-
iments. The crosstalk is caused by the leakage of the
LCTV pixels. the misalignment of the system and the
mismatch between the quasi triangular (RGB) pixel
structure and the square shape of IWM submatrices.
Further efforts will be made. in our subsequent re-
search. to alleviate and eventually eliminate the
crosstalk.

S. Conclusion

We have presented a polychromatic optical neural
network simulation using models of cascaded LCTVs.
This allows the spectral content of the patterns to be
exploited. Since the training set can be decomposed
into primary colors. the polychromatic IWM can be
svnthesized by simply combining the primary color

S
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IWMs of the training set. Computer simulated and
experimental results show that a color neural net can
most likely be constructed using color LCTVs. Fur-
thermore, using the RGB pixel elements of the
LCTVs, multichannel neural net operations should
also be possible.
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Optical implementation of the Hamming net

Xiangyang Yang and Francis T. S. Yu

We present an optical implementation of the Hamming net that can be used as an optimum image
classifier or an associative memory. We introduce a modified Hamming net. in which the dvnamic range
requirement of the spatial light modulator can be relaxed and the number of iteration cvcles in the second
laver ‘or maxnet) can be reduced. Experimental demonstrations of the optical implementation of the

Hamming net are also given.

I. Introduction

In recent years there has been increasing interest in
the optical implementation of artificial neural net-
works. A number of optical neural network architec-
tures have been proposed and demonstrated.!-!3 The
Hopfield model and the Perceptron are the most
frequently used neural network models in these
optical implementations. The Hopfield model is a
fully interconnected network that requires intercon-
nection weights in amounts that equal the square of
the pixel number of the input patterns. For example,
if a group of 32 x 32 pixel patterns are stored there
will be more than one million interconnections in the
Hopfield network. The capability of optics for imple-
menting such a huge interconnection is limited by the
low resolution of the currently available spatial light
modulators (SLM’s). Although a space-time sharing
scheme may alleviate this limitation!3 it reduces the
processing speed significantly. Furthermore the num-
ber of stored patterns in the Hopfield network is
severely limited. In addition, if a great number of
patterns are stored in the neural net it would produce
spurious results in the form of a no-match pattern.!4
Even though the Perceptron is trained by the error-
back-propagation algorithm, it needs a long training
time and requires precise detection of the analog
output signals; this is not strong optical use.

Since the Hamming net does not suffer from these
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limitations!*!5 it would work like an optimum image
classifier. The output is generated by selecting the
class tor exemplar that has the minimum Hamming
distance with respect to the input pattern. The
Hamming distance is defined as the number of bits of
the input pattern that does not match the exemplar.
The number of interconnections in a Hamming net is
proportional to the number of input pixels and the
number of exemplars, and it uses fewer interconnec-
tions than the Hopfield model. Referring to the above
10 32 x 32 pixel stored exemplars, we find that the
Hamming net requires about ten thousand intercon-
nections, instead of one million. as for Hopfield
model. Since the output is selected from the stored
exemplars the Hamming net would not produce any
spurious or no-match results. In fact, the Hamming
net is a K-nearest-neighbor network. In comparison
with the Perceptron, the Hamming net can be rapidiv
trained!® and does not need precise analog detection
at the output domain during the training process.

Because of all these features the Hamming net is
particularly suitable for large-scale optical implemen-
tation. Here we present a modified Hamming net
model that reduces the dynamic range requirement of
the SLM’s. The optical implementation of the modi-
fied Hamming net is presented and the experimental
demonstrations are given.

il. Hamming Net Model

A Hamming net is essentially a two-laver neural
network, as shown in Fig. 1, that can be used as a
maximum-likelihood image classifier.!* The first laver
is known as the Hamming layer and calculates the
Hamming distances between the input pattern and
each exemplar (i.e., each class), whereas the second
layer is known as maxnet, or winner take all. and
selects the maximum output node.!"-19

Let M be the number of the bipolar exemplars
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I WEDS YN WSS 2 Pany TSN O Eew Gy DI WA O Sams O Weww weemr e

output

layer

input

Fig. 1. Hamming net.

stored in the neural network, for which each exem-
plar has N pixels. The first layer ti.e., the Hamming
layver: has N input and M output neurons correspond-
ing to N pixels and M classes. respectively. The
interconnection weights in the first layer are deter-
mined by

X
W, =——

1 3 11 <1< N,

1</<M, (1

where W, is the interconnection weight from ith
input neuron to the jth output neuron, and X'/
‘which can be either +1 or —1) is the value of the ith
pixel in the jth exemplar. The threshold value can be

set as

Nl

sy M 12)

Thus, when an unknown input pattern is presented
at the input. the output of the first layer is given by

AY
Coor =2 WX+ (lsj<M. (3)
=1

When an exemplar matches the input exactly, the
output of the neuron representing that exemplar will
reach the maximum value N. In contrast, when all
the pixels in an exemplar are different from the
corresponding pixels of the input pattern, the output
of the neuron representing the exemplar will be zero.
In general. the output U,(0) has a value between 0
and N, which is equal to the number of bits of the
input pattern that match the bits of the jth exemplar,
ie.,

U0r = N - HD tl <y <M, (4)
where HD is the Hamming distance.

Although the Hamming net is theoretically sound.
the second layer requires a high dynamic range and
successive iterations for producing a maximum out-

4000 APPLIED OPTICS * Vol 31, No. 20 ' 10 July 1992

159

put node. However, if the Hamming distance between
an exemplar and the input pattern is larger than a
certain value, (e.g., N/2, which is more than half of
the different bits), it is not necessary to send a
nonzero signal to the second layer. By referring to
this argument, we develop a modified Hamming net
model below.

Let us introduce a parameter « (0 < a < 1) such
that oV is the maximum Hamming distance that
gives rise to a nonzero output signal from the first
layer. The modified interconnection weights in the
Hamming layer can be written as

‘ISISN. 15_]5‘\"1_ (51

X
Wo= g

for which the threshold value is set at

1. )
9,=N|1-Z;j 1</ <M. 6

The output of the Hamming layer therefore can be
expressed as

N
Ui =f|{SW.X +8|
=1

{ HD
N -~ - when HD < oN

0 otherwise

11 <5< M. h

where f (-) is a thresholding function that is defined as

1 X>0

0 X<0 8

fuo =

By using the proposed scheme, the Hamming dis-
tance between the input and an exemplar can be
enlarged by a factor of 1/a such that the dynamic
range requirement of the SLM’s and the number of
iterative cycles in the maxnet can be reduced. Thus
the overall performance of the modified Hamming net
can be improved. ‘

However, in practice, parameter a cannot be small.
It should be larger than the input noise tolerance of
the network, otherwise the Hamming layer would
produce a zero output at the matching neuron. In our
experiment, we set a = 0.5 in order to adapt to the
dynamic range of a practical SLM in which we assume
that the input noise is ~20%. In this case. the
interconnection weights of the Hamming layver are
given by

the threshold level is

o= 1n




and the output of the Hamming layer is
N
U0 =71> W, X
r=]

| v N
N-2HD HD<3
=<\ 2 - (1L

0 otherwise

Since the maxnet or winner-take-all layer has M
input and M output neurons, the interconnection
weight between the jth input and kth output neurons
can be written as

B P S I
' < 57" < R N &
e, j=k €M TS s

where € is known as the inhibition constant.

If the output signal of the Hamming layer is fed to
the maxnet layer, iterations can be carried out. as
given by

- M 1
Usin + D =g:2 talyinil
w=l i

.

i
=gllvn—eX Ui 11 <j ks My 13

SR i

where g(-) is a nonlinear operator, which assumes a
sigmoid function that represents the input—output
transfer characteristic of the CCD detector.

By successive iterations of the maxnet, one of the
output nodes would have a higher intensity value
while all the other nodes eventually go to zero. It has
been proven that the maxnet will always converge if
€ < (1/M) (see Ref. 15). Thus a maximum output
node can always be found. As a K-nearest-neighbor
classifier, the Hamming net gives rise to only the best
match among all the stored exemplars. However, the
selected match exemplar may not be the same as the
input pattern. In other words, if the input pattern
does not belong to one of the training exemplars, the
output will be one of the exemplar that has the least
Hamming distance with respect to the input.

Furthermore the Hamming net can also be used as
an associative memory, if the exemplar can be repre-
sented at the output of the maxnet instead of using
the intensity value.

Ill. Optical Implementation

Figure 2 shows a schematic diagram of an adaptive
optical neural network for a Hamming net implemen-
tation. The detailed design of the system can be found
in one of our recent publications.!® In brief, an 80-W
xenon arc lamp is used as the light source. The
interconnection weight matrix (IWM) is partitioned
into an array of submatrices and is displayed on a
liquid-crystal television panel (LCTV1). A diffuser is
placed in front of the LCTV1 such that each pixel can
be treated as a secondary source. The input pattern is
displayed on the LCTVZ, and the lenslet array is used
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Fig. 2. Hybrid optical Hamming net. The output signal is fed back
for a multilayer operation.

to establish the optical interconnection between the
LCTV1 and the LCTV2. In other words. the submatri-
ces of the LCTV1 will be angularly multiplexed onto
the LCTV2. From Fig. 2 we see that the light beam
emerging from each of the IWM submatrices will be
superimposed onto the input pattern. An imaging
lens twith a 100-mm diameter and a 75-mm focal
length) is used for focusing at the lenslet array and
imaging onto the CCD camera, for which the array of
output signals can be detected. These array of signals
are then thresholded. and they can be fed back to
LCTV2 for the next iteration.

For demonstrations. we use 12 8 x 8 pixel exem-
plars for the experiments. Since the number of subma-
trices in the IWM equals the number of the stored
exemplars, a circular lenslet array that comprises 12
plano—convex lenses (with 6-mm diameters and
72-mm focal lengths) sandwiched by two pieces of
optical flat glass is used, as shown in Fig. 3. This
circular lenslet array is, in fact. matched with the
aperture of the imaging lens so that the primarv
aberration can be minimized.

In Section II we noted that the IWM is a bipolar
matrix in the first layer of the Hamming net. To
realize the bipolar multiplication in the optical svs-
tem, the IWM can be area modulated before being
displayed on the LCTV1. As illustrated in Fig. 4. each
pixel can be divided into the upper and the lower
parts. For example, the value +1 can be encoded with
transparent and opaque regions, as shown in Fig.
4(a), for a positive IWM. Similarly, the value —1 can
be encoded, as shown in Fig. 4(b), for a negative IW)M.

Fig. 3. Circular lenslet array
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Fig. 4. Area-modulation-encoded IWM in the Hamming layer:
ta) transparent ar.d opaque encoding for +1 and —1 in the positive
IWM. 'b) encoder: pixel in the negative WM.

Needless to say, this input pattern can be encoded in
the same manner as the positive IWM. Let us assume
that an encoded input pattern is fed to the LCTV2,
and encoded positive and negative IWM’s are sequen-
tially displayed on the LCTV1; output intensities
representing the positive part and the negative part
results would then be sequentially collected by the
CCD detector. These two sets of signals are then sent
to the microcomputer for subtraction and threshold-
ing. This array of thresholded signals can be fed back
to the LCTV2 for the maxnet (i.e., the second-layer)
operation.

Figure 5(a) shows a set of 8 x 8 pixel English letters
that are used as the exemplars in the Hamming net.
The positive and negative encoded parts of the [IWM
are shown in the Figs. 5(b) and (c), respectively, in
which the IWM's are partitioned into 12 submatrices
and each submatrix is represented by an 8 x 8 pixel
array.

Since the number of input and output neurons in
the maxnet are equal to the number of the exemplars,
the IWM for the maxnet is partitioned into 12

AB
CDEF
GHIJY

LLALAL

(b)
Fig. 5. Exemplar set and encoded IWM’'s in the Hamming layer:

ta) 12 exemplars. b encoded positive IWM, and ic) encoded
negative [WM.
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submatrices and each submatrix contains 12 pixels.
Area modulation again can be used to encode the
bipolar IWM. As illustrated in Fig. 6ta). the transpar-
ent pixel represents the value + 1 in the positive IWM,
whereas the pixel of the value —e = —1.16 has only
1/16 of the transmitted area in the negative WM.
The encoded positive and negative IWM's are shown
in Figs. 6(b) and 6(c¢), respectively.

We stress that the modified Hamming net increases
the Hamming distance at the input of the maxnet,
which can relax the dynamic range requirement of
the SLM and reduce the iteration cycles for the
maxnet. The sigmoid function representing the input-
output transfer characteristic of the CCD detector
would further reduce the number of iterative cycles.
Since the dynamic range of the input signal to the
maxnet is rather large, low-intensity signals would be
suppressed by the CCD detector. We further note that
the iteration cycles for a conventional maxnet algo-
rithm require ~ 10 cycles (see Ref. 12), whereas the
use of this proposed hybrid optical system takes only
2-3 iterations.

IV. Experimental Demonstrations

Demonstrations of the optical Hamming net are
llustrated in Fig. 7, in which Figs. 7(a) and T(e)
represent two English letter examplars A and H
embedded in 20% random noise. The encoded pat-
terns are depicted in Figs. 7tb) and 7(f). The output
from the first layer are shown in Figs. 7(c) and 7(g).
Figure 7(d) shows the output result of A from the
maxnet after 2 iterations, while Fig. 7(h) represents
the output of H after 3 iterations. We refer to these
results with respect to the exemplars shown in Fig.
5(a) to show that the Hamming net can be used for
pattern classification. Compared with the Hopfield
model that uses the same optical architecture®1° the
Hopfield model becomes unstable when storing more

4-‘ -l/‘6

(b) (€

Fig. 6. Encoded IWM's in the maxnet: ta) pixel encoding for +1
and -1 16, (b) encoded positive IWM, and ¢! encoded negative
WM.




e
(%2
Ht

n

Fig. 7. Experimental demonstrations: ta), (e) Input patterns
embedded in 20% random noise; (b}, (0 encoded input patterns; (¢),
(g) outputs from the first layer: (d), (h) output resuits obtained
from maxnet after two iterations for A and three iterations for H,
respectively.

()

than four examplars. In these experimental demon-
strations we show that the optical Hamming net has a
larger processing capacity compared with the Hop-
field net.

We further note that the converged result from the
maxnet can also ke used to recall the corresponding
exemplar. If this recalled exemplar is displayed on an
SLM as a final result, the Hamming net obviously can
be used as an asscciative memory. We also note that
the maxnet used in the optical unsupervised learning
model'! is carried out primarily with a computer,
whereas the maxnet in the optical Hamming net is
partially carried out by optics.

V. Conclusion

We have shown that the Hamming net requires fewer
interconnections than the fully interconnected Hop-
field neural net. As a K-nearest-neighbor neural
network model the Hamming net can be rapidly
trained, which requires no analog detection during
the training process. These features make Hamming
net particularly suitable for large-scale optical imple-
mentation. We have also shown that the optical
Hamming net can be used as a pattern classifier or an
associative memory, if the convergent result is used
to recall the examplar. One of the important aspects
of the modified Hamming net is enlarging the Ham-
ming distance of the output patterns at the first layer.
This modification relaxes the dynamic range require-
ment of the SLM’s and also reduces the number of
iteration cycles in the maxnet. In order to realize the
bipolar nature of the IWM the area-modulation
scheme is utilized. Experimental demonstrations have
shown that optical implementation of Hamming net
has a larger processing capacity compared with the
optical Hopfield net.
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The use of a phase camrier to perform novelty filtering is proposed and experimentally demonstrated.

In this Communication, we present a novelty filter
implementation using a photorefractive BSO crystal
in a four-wave mixing architecture in conjunction
with an object phase carrier modulation. The four-
wave mixing technique is advantageous as it does not
require a high intensity laser. The novelty filter is
simple to implement since it is recorded in the Four-
ier plane. In addition, a phase carrier modulation is
used to separate the higher orders of the object spec-
trum from the noisy dc component. Using this mod-
ification, the output noise can be suppressed and the
moving object observed at the output plane. System
analysis and experimental verification will be
provided.

Techniques for using photorefractive crystals for
novelty filtering in two-wave mixing [1], beam fan-
ning [2], and four-wave mixing [3,4] architectures
have recently been suggested by several investiga-
tors. The two-wave mixing method uses the deple-
tion of the object beam by the reference beam to con-
struct the novelty filter. For an object moving at
speeds higher than the response time of the photo-
refractive crystal, depletion of the object beam is not
achieved. Thus, the moving object will be displayed
at the output plane of the system. This method re-
quires a high intensity laser beam to obtain the nec-
essary depletion and has been shown to suffer from
a low response time. The beam fanning technique is

also based on the depletion of the object beam. In
this method, the depletion is due to the fanout of the
object beam, thus eliminating the need for a refer-
ence beam. However, this method suffers from the
same drawbacks as the two-wave mixing.

The four-wave mixing interferometric method uses
a phase conjugate mirror to generate two phase con-
jugate beams which form a two-arm interferometer.
In principle, the phase distortion in the interfero-
meter due to any stationary object will be compen-
sated by the phase conjugation and hence, only mov-
ing objects will be displayed at the output of the
interferometer. However, because of the nonuni-
formity of the photorefractive material, no phase
distortion can be completely compensated by phase
conjugation. In addition, the nonuniform intensity
distribution of the incident light may also produce
phase distortion in conjugated beams. Also, in prac-
tice, it is rather difficult to construct a two-arm phase
conjugate interferometric configuration and ex-
tremely difficult to obtain a null output field from
the interferometer.

In this Communication we present a novelty filter
implementation using a four-wave mixing architec-
ture with an additional phase carrier modula:ion.
Since the filter is located in the Fourier plane, this
configuration is easier to implement than the pre-
vious interferometric techniques and due to the fo-
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cusing of the energy, requires lower laser power. In
an ideal four-wave mixing set up, a phase object will
be compensated by the phase conjugate beam, and
only a dc component will be reconstructed by the fil-
ter. Thus a high pass filter blocking the dc term at the
Fourier plane, will result in a null output for a sta-
tionary object. However, if the object is in motion,
the high frequency component from the moving ob-
ject will be observed at the output plane. The low
frequency contents of the moving object, as well as
its dc component are blocked by the high pass filter.
To overcome this problem, a phase carrier grating is
added to the input signal to shift the spectrum of the
moving object away from the onigin and the dc com-
ponents. For a stationary object, the phase grating
formed by the object at the crystal will be compen-
sated by the phase beam and a constant field is ob-
tained at the output of the interferometer. This can
be blocked by a dc filter at the Fourier plane, re-
sulting in a null output signal. For a moving object
however. the phase grating will not be completely
compensated and the resuiting modulated spectrum
will not be eliminated by the dc filter. Thus by using
one of the higher diffraction orders, the moving ob-
ject can be observed at the output plane.

Two implementations of the phase carrier mod-
ulation will be discussed in this Communication. In
the first method, we assume that a phase object is
moving in front of a stationary phase grating. Let
@Dy (x. y, 1) be the moving phase object, where (x, ¥)
are the spatial coordinates at the input plane. Then
the light field exiting the object phase grating pair is
given by
Ay =exp[iPo(x. ). 1) sin(2rfox)], (1)
where f; is the carrier frequency of the phase grating.
Thus the corresponding phase conjugate beam de-

rived from the phase conjugate mirror arriving at the
object plane, is given by

Ac=exp[ =1 (x, 35 1) sin(2nfox) ], (2a)

where @ is the conjugated phase distribution due to
four-wave mixing. For a stationary object, there is
no time dependence, and the beam from the phase

conjugate mirror is ideally the conjugate of the ob-
ject beam. and hence

Ac=kA3, (2b)
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where k is a proportionality constant. For a nonsta-
lionary object, moving faster than the response time
of the crystal, the conjugate beam cannot compen-
sate for the object beam. We model this inability to
compensate for the motion as a time delay, At. on
the conjugate beam,

D(x,y,1)=P3(x. y, 1= Ar)
=—¢0(x.y,t—A') (ZC)

The time difference Az consists of two terms. the first
being the path difference between the conjugate beam
and the object beam, which is extremely small. and
the second being the time delay that is observed be-
tween the conjugate beam and the object beam due
to the finite response time of the crystal.

Thus, for a nonstationary object, the phase con-
Jjugate beam passes through the object again. and the
beam exiting the input plane can then be written as

B=exp{i[Po(x, ;1)
= Po(x. )5 1~ At) ] sin(2nfox)) (3)

If we assume that the phase carrier fraquency f; is
much higher than the bandwidth of the object. then.
using the Jacobi-Anger formula. eq. (3) can be ex-
pressed as

”w= +an

Bx Y J.(AD(x.y 1)) exp(ilnmfyx), (4)

mms — oD

where AD(x, V; 1)=Do(x, 1; 1)—Dg(x, 37 1= A1)
From this result we see that each diffraction order
contains the A@(x, 17 r) distribution. Notice that
when AD(x, y; t) =0. i.e. for a stationary object. the
dc component is the only nonzero term in eq. (4).
Therefore, by blocking all but one of the diffraction
orders, a null output is expected.

For the second implementation, we assume that
the phase carrier modulation is superimposed on the
object and that they are moving at a constant veloc-
ity v. The output light field can be written as

B=exp{i[Po(x—vt, 3, 1) sin[2nf(x—1t))
—Po(x,y, )] sin(2nfyx)}. (5)

By assuming that the carrier frequency is much
greater than the bandwidth of the object, eq. (5) can
be written as
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Bx Y {Ja[@o(x—11,p,1) cos[2afy(x—ut)]

— Py ) = [Py (x—ut, ¥, 1)
xsin(2afur) 1} exp(i2nmfyx) . (6)

Thus the average intensity for the mith order term
would be

L, = {(JR[@(x—1t. y) cos(2afyut) = P(x. y)])
+ ([ P(x—vt.y)sin(2afhue)]) (7)

where { > denotes the ensemble time average. Thus
we see that each of the diffraction orders contains
the information content of the moving object. Fur-
thermore for y=0. i.e. a stationary object, /,,=0 (ex-
cept for the zeroth order). Therefore, by imaging one
of the higher diffraction orders, the moving object
can be observed.

For the experimental demonstration, we used the
configuration shown in fig. 1. An argon laser beam
1s divided into three beams, A, B, and C using two
beam splitters. A BSO crystal biased witha 6kV/cm
transverse electric fleld is used as a phase conjugate
mirror. Beams B and C serve as the pump beams.
Beam A illuminates the input object and is trans-
formed by the Fourier transform lens L, onto the
crystal. A phase conjugate beam (shown by broken
linesin fig. 1), is generated by the crystal, and passes
through the object transparency. The resultant out-

Aperiure

o
camers

Fig. 1. Experimental setup for novelty filtering with phase carrier
frequency.
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put light field s imaged by lens L. onto the CCD
camera in which a small aperture is incorporated to
select the specific diffraction order. The input object
encoded with a grating structure 's shown in fig. 2.
where the grating frequency f; 1s approximately 4
lines/mm. The phase carrier encoded object was ob-
tained using a conventional bleaching process.

The spectrum of a stationarv object at the Fourier
plane is shown in fig. 3a. The high diffraction orders
appear very weak. This demonstrates that the input
phase object (with the phase grating) was compen-
sated by the phase conjugation. However. as the ob-

)
/

1
7

Fig. 2. The phase carrier frequency encoded object.

Fig. 3. The spectral distribution of the novelty filter, (a) for a
stationary object and (b) for a moving object.
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ject moves, the high diffraction orders appear much
brighter as shown in fig. 3b. If one of the upper or
lower non-zero diffraction orders is selected. the out-
put image of the moving object can be captured by
the CCD camera. Figure 4a shows the resulting out-
put image obtained of the moving phase object. From
this result, we have shown that a moving object can
be reconstructed at the output plane.

The frequency of the phase carrier is mainly lim-
ited by the nonuniformity of the photorefractive
crystal. The use of the transform lens L, minimizes
the effect of the nonuniformity of the crystal, since

Fig. 4. The output image distributions using the filter for a mov-
ing object.
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only a small conical region within the crystal is used.
In our experiments the crystal thickness is 10 mm,
and a carrier frequency of up to 10 lines/mm were
used. For gratings of higher frequency, the phase
compensation can not be fully accomplished result-
ing in residual high diffraction orders of the spec-
trum which can be seem in fig. 3a.

In summary we have implemented a novelty filter
using a four-wave mixing architecture which em-
ploys a photorefractive BSO crystal and a phase car-
rier modulation. Due to the use of this architecture,
the configuration has a lower laser power require-
ment than the two-wave mixing and beam fanning
techniques. In addition, fast response speeds can be
achieved using the BSO crystal. To reduce the effects
of the output noise of the system. a phase carrier was
used enabling movement in the input scene to be de-
tected. Using an encoded carmier frequency, this
technique can be used for tracking a moving object.

We acknowledge the support of the U.S. Army
Missile Command through the U.S. Army Research
Office under contract DAAL03-91-0112.
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A compact j .int transform correlator with a thick photore-
fractive crystal is presented. We demonstrate that Bragg
diffraction severely limits the correlation performance in a
thick crystal. To relax the Bragg limitation of the crystal a
Galilean telescopic beam compression technique is used in
the joint transform correlator.

The ability to process a large quantity of information at
high speed r. akes the optical correlator an attractive candi-
date for applications to machine vision, target tracking,
object detection, etc. Although conceptually simple, the
VanderLug. -orrelator,! which employs a holographic spa-
tial filtering technique, has inherent filter synthesis and
alignment problems that prevent its widespread practical
application. On the other hand the joint transform correla-
tor (JTC)*? i; a simple and practical processor that over-
comes these rwo major disadvantages. Since photorefrac-
tive material- can be continuously updated for processing
they are good candidates for real-time operations.** Unlike
spatial light modulators (SLM’s) some photorefractive ma-
terials have very high spatial resolution (of the order of
7000 lines/mm) and have a sensitivity approaching that of
photographic film.

Using a photorefractive crystal to construct a spatial
filter is similar to recording a volume hologram. The
readout process of a crystal hologram is severely limited by
Bragg diffraction.” Since the angular selectivity of the
photorefractive crystal increases with the thickness of the
crystal, we discuss a two-beam compression technique for
alleviating the Bragg diffraction limitation.

Let us begin with a general expression for Bragg diffrac-
tion:

G=k -k, Y

where G represents the grating vector within the crystal
and k, and k, are wave vectors of the writing beams,
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If the recorded hologram is read out by vector k,, as
shown in Fig. 1, and the scattered wave vector is denoted by
k,, then the phase difference (PD) of the light that is
scattered from two points within the crystal can be written
as

PD=G-r-(k,- k) r, (2)

where r denotes the displacement vector between the two
points. From Egs. (1) and (2) we obtain

PD=A4k " r, 3)
where
Ak = (ko - k, — k; + ky) 4)
is known as the dephasing vector.

The normalized intensity of scattered light from the
entire volume of the crystal can be expressed as

2

[ exp(iak - r)dv| .

I(k,) = ®

This expression is valid only under weak diffraction condi-
tions in which the multiple diffractions within the crystal
are considered negligible. With reference to a JTC with a
photorefractive crystal, shown in Fig. 2, the wave vectors
k,, k,, and k, can be expressed as

X M xo'

kos—kn-bkl—zﬂ,)z. 6)
Xy n 'S

kls-Tu+-i 1—2—111 . N
no o=

k’S—Au+X "2“31, (8)

Ry
o >
Z"

Fig. 1. Braggdiffraction in a thick photorefraetive crystal.
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Fig. 2. JTC with a BSO crystal. BS, beam splitter.

where x,, x,, and x, are normalized coordinates of objects 1
and 2 and the output plane, respectively, n represents the
refractive index of the crystal, and A is the wavelength of
the light source. The normalized coordinates x,, x,, and x,
are obtained by dividing the respective coordinates by the
focal length of the transform lens system f. If the crystal
hologram is read out by the k, vector, the output correla-
tion intensity can be calculated by

Ix) = l ST fa0*x, - gz, + rexp( sk - r)dx,dr,dudz| , (9)

where ¢, and g, are the object functions and (u, 2) repre-
sents the coordinate system of the crystal. The separation
of objects 2k is normalized in the same manner as coordi-
nates x,, x,, and x,.

For simplicity we assume that the crystal is infinitely
extended in the transverse direction. The resulting Bragg
diffraction condition of the crystal in the transverse direc-
tion is (Ak), = 0. Equation (9) can be reduced to the
following form:

2

1) = | 7" quxa = hgitzo = x)sinc(nDak, )z, . (10)

where

(Io-h)(x,-h).

Ak, = ™

(11

Thus we see that the output correlation peak is diffracted at
x, = h. The maximum peak intensity occurs when the object
qo(x,) and the sinc factor are both centered at x, = k. In
order to obtain a high correlation intensity the width of the
sinc factor should be wider than the width of the object. We
note that the Bragg diffraction of the crystal severely limits
the width of the object and the shift invariance property of
the JTC.

In order to alleviate the Bragg diffraction limitation a
method that uses beam compression in a JTC is discussed.
Since the width of the object and the shifted distance are
both normalized by the focal length of the transform lens
these values, in effect, represent the angles subtended by
the writing beams in the crystal. Thus, by simply reducing
these angles, the Bragg diffraction limitation can be re-
laxed.

In order to achieve a two-dimensional beam compression
in a JTC a Galilean telescope can be used as shown in Fig. 3.
Note that the use of a Galilean telescope to alleviate low
resolution in SLM’s has been reported recently by Davis et
al.* For the JTC system shown in Fig. 3 the beam compres-
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Fig. 3. Two-dimensional beam compression tecanique with a
Galilean telescope.

sion ratio is

M L. 12)
M = (
f—Lx

Thus the effective focal length of the JTC is approximately
MF, by which the scale of the object spectrum is enlarged by
a factor of M. To preserve the space-bandwidth product of
the JTC the transverse size of the crystal should also be
increased by a factor of M.

For experimental demonstration a compact JTC with a
bismuth silicon oxide (BSO) photorefractive crystal is shown
in Fig. 3. The 10-mm-thick BSO crystal is operating under a
6-kV/cm transverse electric field. In our experiments En-
glish letters O and X approximately 2.5 mm in size are used
as input objects for autocorrelation and cross-correlation
operations. The separation between input objects varies
from 6 to 17 mm. The crystal holograms are recorded with
an Ar* laser lasing at 488 nm. The output correlation peak
is detected by a CCD camera and then digitized for three-
dimensional display. The correlation performances of the
proposed JTC are plotted in Fig. 4. Figure 4 shows the
output autocorrelation peaks obtained from the letter O
with increasing separation between the input objects. From
these figures we see that the autocorrelation peak decreases
as the object separation increases.

@

(b)

(©

Fig. 4. Output autocorrelation distributions of the letter O with a
two-dimensional compression technique for various object separa-
tions: (a)2h = 11 mm,(b)2h = 13 mm, (¢c)2hA = 17mm. _
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Fig. 5. Variation of the relative peak intensity with the beam
compression ratio.

It should also be mentioned that, without the introduc-
tion of a negative lens in the JTC, the correlation peaks
were not observed. This is due primarily to the Bragg
limitations of the crystal. Introducing a negative lens
{coupled with a transform lens) forms the well-known
Galilean telescope. We have observed that the correlation
peaks are greatly enhanced.

In view of Egs. (10) and (11) the correlation peak
intensity occurs when the sinc factor is centered at x = h.
To compute the correlation peak intensity as a function of
M, which is given in Eq. (12), we assume that the focal
length of the transform lens f = 10 cm, the wavelength of
the light source A = 488 nm, the input objects are rectangu-
lar shapes of ~ 2.5-mm width separated by a distance of 15
mm, and the refractive index of the BSO crystal is 2.54 with
a thickness of 1 cm. The beam compression ratio M
represents the magnitude of compression of the angles by
the writing beams in the crystal. As these angles are
decreased, the Bragg diffraction limitation is relaxed. Hence
by increasing the beam compression ratio M the peak
intensity should increase. Figure 5 is a plot of the relative
peak intensity computed for increasing values of M. From
this figure we see that the peak intensity increases rapidly
as M increases from 4 to 8 and then saturates for M > 8.
This indicates that the output correlation performance in a
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JTC system can be improved beyond the Bragg diffraction
limitations of the original system by using this compact
object beam compression technique.

In conclusion, we have demonstrated that the Bragg
diffraction limitation in a thick photorefractive crystal can
be relaxed by using a Galilean telescope in a JTC. However
to preserve the space-bandwidth product of the system an
increase of the beam compression ratio M requires a larger
transverse size of the crystal. Also the increased size of the
Fourier spectrum may decrease the light intensity at the
crystal and result in slower response times. Nevertheless
this beam compression can be used to design a compact
real-time JTC with a photorefractive crystal.

We acknowledge the support of the U.S. Army Missile
Command through U.S. Army Research Office contract
DAALOQ3-87-K-0147.
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